Stochastic Dynamics
Editat de Hans Crauel, Matthias Gundlachen Limba Engleză Paperback – 22 apr 2013
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 623.84 lei 43-57 zile | |
| Springer – 22 apr 2013 | 623.84 lei 43-57 zile | |
| Hardback (1) | 629.04 lei 43-57 zile | |
| Springer – 26 mar 1999 | 629.04 lei 43-57 zile |
Preț: 623.84 lei
Preț vechi: 733.93 lei
-15% Nou
Puncte Express: 936
Preț estimativ în valută:
110.39€ • 129.45$ • 96.95£
110.39€ • 129.45$ • 96.95£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781475772661
ISBN-10: 1475772661
Pagini: 472
Ilustrații: XXVII, 440 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 1475772661
Pagini: 472
Ilustrații: XXVII, 440 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Stability Along Trajectories at a Stochastic Bifurcation Point.- Bifurcations of One-Dimensional Stochastic Differential Equations.- P-Bifurcations in the Noisy Duffing-van der Pol Equation.- The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation.- Numerical Approximation of Random Attractors.- Random Hyperbolic Systems.- Some Questions in Random Dynamical Systems Involving Real Noise Processes.- Topological, Smooth, and Control Techniques for Perturbed Systems.- Perturbation Methods for Lyapunov Exponents.- The Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equations.- Towards a Theory of Random Numerical Dynamics.- Canonical Stochastic Differential Equations based on Lévy Processes and Their Supports.- On the Link Between Fractional and Stochastic Calculus.- Asymptotic Curvature for Stochastic Dynamical Systems.- Stochastic Analysis on (Infinite-Dimensional) Product Manifolds.- Evolutionary Dynamics in Random Environments.- Microscopic and Mezoscopic Models for Mass Distributions.