Statistical Physics II: Nonequilibrium Statistical Mechanics: Springer Series in Solid-State Sciences, cartea 31
Autor Ryogo Kubo Traducere de M. Toda Autor Morikazu Toda Traducere de R. Kubo Autor Natsuki Hashitsume Traducere de N. Saito, N. Hashitsumeen Limba Engleză Paperback – 14 noi 1991
Din seria Springer Series in Solid-State Sciences
- 18%
Preț: 919.81 lei - 18%
Preț: 1765.85 lei - 18%
Preț: 978.08 lei - 15%
Preț: 511.60 lei - 18%
Preț: 921.36 lei -
Preț: 371.20 lei - 18%
Preț: 1756.15 lei - 15%
Preț: 635.48 lei -
Preț: 375.07 lei - 15%
Preț: 614.90 lei - 15%
Preț: 610.63 lei - 18%
Preț: 861.43 lei - 15%
Preț: 622.91 lei - 15%
Preț: 626.20 lei - 18%
Preț: 855.69 lei - 15%
Preț: 615.84 lei - 15%
Preț: 624.46 lei - 15%
Preț: 620.68 lei - 15%
Preț: 619.45 lei - 15%
Preț: 628.56 lei - 18%
Preț: 919.54 lei - 15%
Preț: 613.00 lei - 23%
Preț: 1129.30 lei - 15%
Preț: 614.41 lei - 15%
Preț: 623.22 lei - 15%
Preț: 612.85 lei - 15%
Preț: 615.35 lei -
Preț: 376.55 lei -
Preț: 376.01 lei - 15%
Preț: 613.94 lei - 18%
Preț: 966.98 lei - 18%
Preț: 702.51 lei - 15%
Preț: 615.66 lei - 15%
Preț: 618.83 lei - 18%
Preț: 1183.12 lei - 18%
Preț: 1178.23 lei - 18%
Preț: 913.32 lei - 15%
Preț: 617.89 lei - 15%
Preț: 615.84 lei - 18%
Preț: 1181.26 lei
Preț: 908.00 lei
Preț vechi: 1107.32 lei
-18% Nou
Puncte Express: 1362
Preț estimativ în valută:
160.70€ • 188.46$ • 140.90£
160.70€ • 188.46$ • 140.90£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540538332
ISBN-10: 354053833X
Pagini: 300
Ilustrații: XVI, 279 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:2nd ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Solid-State Sciences
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354053833X
Pagini: 300
Ilustrații: XVI, 279 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:2nd ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Solid-State Sciences
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Brownian Motion.- 1.1 Brownian Motion as a Stochastic Process.- 1.2 The Central Limit Theorem and Brownian Motion.- 1.3 The Langevin Equation and Harmonic Analysis.- 1.4 Gaussian Processes.- 1.5 Brownian Motion Modeled by a Gaussian Process.- 1.6 The Fluctuation-Dissipation Theorem.- 2. Physical Processes as Stochastic Processes.- 2.1 Random Frequency Modulation.- 2.2 Brownian Motion Revisited.- 2.3 Markovian Processes.- 2.4 Fokker-Planck Equation.- 2.5 Contraction of Information. Projected Processes.- 2.6 Derivation of Master Equations.- 2.7 Brownian Motion of a Quantal System.- 2.8 Boltzmann Equation.- 2.9 Generalized Langevin Equation and the Damping Theory.- 3. Relaxation and Resonance Absorption.- 3.1 Linear Irreversible Processes.- 3.2 Complex Admittance.- 3.3 Debye Relaxation.- 3.4 Resonance Absorption.- 3.5 Wave Number-Dependent Complex Admittance.- 3.6 Dispersion Relations.- 3.7 Sum Rules and Interpolation Formulas.- 4. Statistical Mechanics of Linear Response.- 4.1 Static Response to External Force.- 4.2 Dynamic Response to External Force.- 4.3 Symmetry and the Dispersion Relations.- 4.4 Fluctuation and Dissipation Theorem.- 4.5 Density Response, Conduction and Diffusion.- 4.6 Response to Thermal Internal Forces.- 4.7 Some Remarks on the Linear-Response Theory.- 5. Quantum Field Theoretical Methods in Statistical Mechanics.- 5.1 Double-Time Green’s Functions.- 5.2 Chain of Equations of Motion and the Decoupling Approximation.- 5.3 Relation to the Kinetic Equation.- 5.4 Single-Particle Green’s Function and the Causal Green’s Function.- 5.5 Basic Formula for Perturbational Expansion.- 5.6 Temperature Green’s function.- 5.7 Diagram Technique.- 5.8 Dyson Equation.- 5.9 Relationship Between the Thermodynamic Potential and the Temperature Green’sFunction.- 5.10 Special Case of the Two-Particle Green’s function.- General Bibliography of Textbooks.- References.
Textul de pe ultima copertă
Statistical Physics II introduces nonequilibrium theories of statistical mechanics from the viewpoint of the fluctuation-dissipation theorem. Emphasis is placed on relaxation from nonequilibrium to equilibrium states, the response of a system to an external disturbance, and general problems involved in deriving a macroscopic physical process from more basic underlying processes. Fundamental concepts and methods are stressed, rather than the numerous individual applications.