Spatio-Temporal Graph Data Analytics
Autor Venkata M. V. Gunturi, Shashi Shekharen Limba Engleză Hardback – 9 ian 2018
In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area.
This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 721.21 lei 43-57 zile | |
| Springer International Publishing – 4 iun 2019 | 721.21 lei 43-57 zile | |
| Hardback (1) | 727.07 lei 43-57 zile | |
| Springer International Publishing – 9 ian 2018 | 727.07 lei 43-57 zile |
Preț: 727.07 lei
Preț vechi: 908.83 lei
-20% Nou
Puncte Express: 1091
Preț estimativ în valută:
128.66€ • 150.87$ • 112.99£
128.66€ • 150.87$ • 112.99£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319677705
ISBN-10: 3319677705
Pagini: 100
Ilustrații: X, 100 p. 61 illus., 30 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3319677705
Pagini: 100
Ilustrații: X, 100 p. 61 illus., 30 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.34 kg
Ediția:1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Cuprins
1 Introduction.- 2 Fundamental Concepts for Spatio-Temporal Graphs.- 3 Representational Models for Spatio-Temporal Graphs.- 4 Fastest Path for a Single Departure-Time.- 5 Advanced Concepts: Critical Time Point Based Approaches.- 6 Advanced Concepts: Bi-directional Search for Temporal Digraphs.- 7 Knowledge Discovery: Temporal Disaggregation in Social Interaction Data.- 8 Trend Topics: Engine Data Analytics.
Caracteristici
Describes a unique overarching model which can support a wide variety of spatio-temporal graph data Covers A* and bi-directional search for determining fastest paths over spatio-temporal graphs Introduces spatio-temporal graph datasets, such as engine measurement data Applications from the research covered in this book (navigational algorithms), can be used for Uber service and Google's autonomous cars