Self-Adaptive Heuristics for Evolutionary Computation: Studies in Computational Intelligence, cartea 147
Autor Oliver Krameren Limba Engleză Paperback – 28 oct 2010
This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 615.76 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 28 oct 2010 | 615.76 lei 43-57 zile | |
| Hardback (1) | 622.20 lei 43-57 zile | |
| Springer – 19 aug 2008 | 622.20 lei 43-57 zile |
Din seria Studies in Computational Intelligence
- 20%
Preț: 486.29 lei - 20%
Preț: 1009.02 lei - 20%
Preț: 1003.51 lei - 20%
Preț: 1025.34 lei - 20%
Preț: 1008.57 lei - 20%
Preț: 1008.34 lei - 20%
Preț: 1124.84 lei - 18%
Preț: 2403.93 lei - 20%
Preț: 1400.58 lei - 20%
Preț: 1119.57 lei - 20%
Preț: 1120.92 lei - 20%
Preț: 1119.32 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 562.99 lei - 20%
Preț: 1114.70 lei - 20%
Preț: 1010.18 lei - 20%
Preț: 1121.38 lei - 20%
Preț: 1006.97 lei - 20%
Preț: 1113.80 lei - 18%
Preț: 1356.02 lei - 20%
Preț: 957.11 lei - 20%
Preț: 1002.56 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 323.19 lei - 20%
Preț: 1240.82 lei - 18%
Preț: 1173.68 lei - 18%
Preț: 609.96 lei - 20%
Preț: 624.19 lei - 20%
Preț: 1517.38 lei - 20%
Preț: 618.64 lei - 20%
Preț: 632.09 lei - 20%
Preț: 951.51 lei - 20%
Preț: 1388.21 lei - 20%
Preț: 1005.40 lei - 20%
Preț: 950.72 lei - 20%
Preț: 1002.26 lei - 20%
Preț: 1403.26 lei - 18%
Preț: 1185.81 lei - 20%
Preț: 1010.58 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1225.75 lei - 20%
Preț: 1109.26 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1124.27 lei - 20%
Preț: 1117.15 lei - 20%
Preț: 1118.77 lei - 18%
Preț: 966.67 lei - 20%
Preț: 1014.90 lei - 20%
Preț: 1234.45 lei
Preț: 615.76 lei
Preț vechi: 769.71 lei
-20% Nou
Puncte Express: 924
Preț estimativ în valută:
108.98€ • 127.80$ • 95.55£
108.98€ • 127.80$ • 95.55£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642088780
ISBN-10: 3642088783
Pagini: 196
Ilustrații: XII, 182 p. 39 illus.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642088783
Pagini: 196
Ilustrații: XII, 182 p. 39 illus.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I: Foundations of Evolutionary Computation.- Evolutionary Algorithms.- Self-Adaptation.- II: Self-Adaptive Operators.- Biased Mutation for Evolution Strategies.- Self-Adaptive Inversion Mutation.- Self-Adaptive Crossover.- III: Constraint Handling.- Constraint Handling Heuristics for Evolution Strategies.- IV: Summary.- Summary and Conclusion.- V: Appendix.- Continuous Benchmark Functions.- Discrete Benchmark Functions.
Textul de pe ultima copertă
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.
This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
Caracteristici
Presents recent research on Self-Adaptive Heuristics for Evolutionary Computation