Second Course in Ordinary Differential Equations for Scientists and Engineers: Universitext
Autor Mayer Humi, William Milleren Limba Engleză Paperback – 16 dec 1987
Din seria Universitext
-
Preț: 469.31 lei - 15%
Preț: 522.85 lei -
Preț: 417.64 lei -
Preț: 348.81 lei -
Preț: 389.30 lei -
Preț: 470.62 lei - 15%
Preț: 532.05 lei - 15%
Preț: 487.81 lei -
Preț: 442.01 lei - 15%
Preț: 449.98 lei - 15%
Preț: 507.50 lei - 15%
Preț: 558.32 lei -
Preț: 468.74 lei -
Preț: 468.38 lei -
Preț: 405.96 lei - 19%
Preț: 425.96 lei -
Preț: 371.20 lei - 15%
Preț: 476.16 lei -
Preț: 373.03 lei -
Preț: 378.05 lei -
Preț: 371.93 lei -
Preț: 443.31 lei -
Preț: 367.85 lei -
Preț: 368.79 lei - 15%
Preț: 675.40 lei -
Preț: 374.91 lei -
Preț: 380.99 lei - 19%
Preț: 464.46 lei -
Preț: 392.51 lei - 15%
Preț: 450.29 lei - 15%
Preț: 456.60 lei -
Preț: 376.75 lei - 17%
Preț: 391.14 lei - 15%
Preț: 462.87 lei - 15%
Preț: 455.18 lei -
Preț: 438.87 lei -
Preț: 368.05 lei - 15%
Preț: 459.05 lei - 20%
Preț: 490.60 lei - 20%
Preț: 319.13 lei -
Preț: 365.45 lei - 15%
Preț: 495.81 lei - 15%
Preț: 572.89 lei -
Preț: 371.93 lei - 15%
Preț: 513.20 lei -
Preț: 465.60 lei - 15%
Preț: 450.46 lei - 15%
Preț: 627.01 lei - 15%
Preț: 618.64 lei - 15%
Preț: 579.03 lei
Preț: 382.30 lei
Puncte Express: 573
Preț estimativ în valută:
67.62€ • 79.04$ • 58.79£
67.62€ • 79.04$ • 58.79£
Carte tipărită la comandă
Livrare economică 07-21 martie
Specificații
ISBN-13: 9780387966762
ISBN-10: 0387966765
Pagini: 441
Ilustrații: XI, 441 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387966765
Pagini: 441
Ilustrații: XI, 441 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
O: Review.- 1. Solution of second order ordinary differential equations by series.- 2. Regular singular points.- 3. Series solutions near a regular singular point.- 1: Boundary Value Problems.- 1. Introduction.- 2. Adjoint differential equations and boundary conditions.- 3. Self -adjoint systems.- 4. A broader approach to self-adjoint systems.- 5. Sturm-Liouvi1 le theory.- 6. Introduction to orthogonality and completeness.- 2: Special Functions.- 1. Hypergeometric series.- 2. Bessel functions.- 3. Legendre polynomials.- 4. Gamma function.- 3: Systems of Ordinary Differential Equations.- 1. Introduction.- 2. Method of elimination.- 3. Some linear algebra.- 4. Linear systems with constant coefficients.- 5. Linear systems with variable coefficients.- 6. Elements of linear control theory.- 7. The Laplace transform.- 4: Applications of Symmetry Principles to Differential Equations.- 1. Introduction.- 2. Lie groups.- 3. Lie algebras.- 4. Prolongation of the action.- 5. Invariant differential equations.- 6. The factor ization method.- 7. Examples of factorizable equations.- 5: Equations with Periodic Coefficients.- 1. Introduction.- 2. Floquet theory for periodic equations.- 3. Hill’s and Mathieu equations.- 6: Green’s Functions.- 1. Introduction.- 2. General definition of Green’s function.- 3. The interpretation of Green’s functions.- 4. Generalized functions.- 5. Elementary solutions and Green’s functions.- 6. Eigenfunetion representation of Green’s functions.- 7. Integral equations.- 7: Perturbation Theory.- 1. Preliminaries.- 2. Some basic ideas-regular perturbations.- 3. Singular perturbations.- 4. Boundary layers.- 5. Other perturbation methods.- *6. Perturbations and partial differential equations.- *7. Perturbation of eigenvalue problems.- *8. The Zeemanand Stark effects.- 8: Phase Diagrams and Stability.- 1. General introduction.- 2. Systems of two equations.- 3. Some general theory.- 4. Almost linear systems.- 5. Almost linear systems in R2.- 6. Liapounov direct method.- 7. Periodic solutions (limit cycles).- 9: Catastrophes and Bifurcations.- 1. Catastrophes and structural stability.- 2. Classification of catastrophe sets.- 3. Some examples of bifurcations.- 4. Bifurcation of equilibrium states in one dimension.- 5. Hopf bifurcation.- 6. Bifurcations in R.- 10: Sturmian Theory.- 1. Some mathematical preliminaries.- 2. Sturmian theory for first order equations.- 3. Sturmian theory for second order equations.- 4. Prufer transformations.