Scientific Computing with Mathematica®: Mathematical Problems for Ordinary Differential Equations: Modeling and Simulation in Science, Engineering and Technology
Autor Addolorata Marasco, Antonio Romanoen Limba Engleză Hardback – 9 aug 2001
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 616.51 lei 6-8 săpt. | |
| birkhäuser – 19 apr 2013 | 616.51 lei 6-8 săpt. | |
| Hardback (1) | 620.23 lei 6-8 săpt. | |
| Birkhäuser Boston – 9 aug 2001 | 620.23 lei 6-8 săpt. |
Din seria Modeling and Simulation in Science, Engineering and Technology
- 18%
Preț: 921.17 lei - 18%
Preț: 858.40 lei -
Preț: 395.25 lei - 15%
Preț: 529.83 lei - 23%
Preț: 711.20 lei - 15%
Preț: 612.05 lei -
Preț: 443.11 lei - 15%
Preț: 614.60 lei - 15%
Preț: 635.80 lei - 15%
Preț: 625.09 lei - 18%
Preț: 714.52 lei -
Preț: 386.52 lei - 20%
Preț: 620.38 lei - 15%
Preț: 615.84 lei - 15%
Preț: 562.71 lei - 15%
Preț: 624.33 lei - 18%
Preț: 698.87 lei - 18%
Preț: 1332.17 lei - 18%
Preț: 914.06 lei - 18%
Preț: 769.85 lei - 20%
Preț: 619.14 lei - 18%
Preț: 915.29 lei -
Preț: 385.06 lei - 19%
Preț: 573.34 lei -
Preț: 370.46 lei -
Preț: 442.01 lei - 18%
Preț: 918.77 lei -
Preț: 372.50 lei - 15%
Preț: 613.62 lei -
Preț: 378.05 lei - 18%
Preț: 1179.30 lei - 15%
Preț: 618.64 lei - 15%
Preț: 622.91 lei -
Preț: 381.19 lei - 15%
Preț: 621.17 lei - 19%
Preț: 440.02 lei
Preț: 620.23 lei
Preț vechi: 729.69 lei
-15% Nou
Puncte Express: 930
Preț estimativ în valută:
109.76€ • 127.99$ • 96.37£
109.76€ • 127.99$ • 96.37£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817642051
ISBN-10: 0817642056
Pagini: 288
Ilustrații: XIV, 270 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Modeling and Simulation in Science, Engineering and Technology
Locul publicării:Boston, MA, United States
ISBN-10: 0817642056
Pagini: 288
Ilustrații: XIV, 270 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.55 kg
Ediția:2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Modeling and Simulation in Science, Engineering and Technology
Locul publicării:Boston, MA, United States
Public țintă
Professional/practitionerCuprins
1 Solutions of ODEs and Their Properties.- 1.1 Introduction.- 1.2 Definitions and Existence Theory.- 1.3 Functions DSolve, NDSolve, and Differentiallnvariants.- 1.4 The Phase Portrait.- 1.5 Applications of the Programs Sysn, Phase2D, PolarPhase, and Phase3D.- 1.6 Problems.- 2 Linear ODEs with Constant Coefficients.- 2.1 Introduction.- 2.2 The General Solution of Linear Differential Systems with Constant Coefficients.- 2.3 The Program LinSys.- 2.4 Problems.- 3 Power Series Solutions of ODEs and Frobenius Series.- 3.1 Introduction.- 3.2 Power Series and the Program Taylor.- 3.3 Power Series and Solutions of ODEs.- 3.4 Series Solutions Near Regular Singular Points: Method of Frobenius.- 3.5 The Program SerSol.- 3.6 Other Applications of SerSol.- 3.7 The Program Frobenius.- 3.8 Problems.- 4 Poincaré’s Perturbation Method.- 4.1 Introduction.- 4.2 Poincaré’s Perturbation Method.- 4.3 How to Introduce the Small Parameter.- 4.4 The Program Poincare.- 4.5 Problems.- 5 Problems of Stability.- 5.1 Introduction.- 5.2 Definitions of Stability.- 5.3 Analysis of Stability: The Direct Method.- 5.4 Polynomial Liapunov Functions.- 5.5 The Program Liapunov.- 5.6 Analysis of Stability, the Indirect Method: The Planar Case.- 5.7 The Program LStability.- 5.8 Problems.- 6 Stability: The Critical Case.- 6.1 Introduction.- 6.2 The Planar Case and Poincaré’s Method.- 6.3 The Programs CriticalEqS and CriticalEqN.- 6.4 The Center Manifold.- 6.5 The Program CManifold.- 6.6 Problems.- 7 Bifurcation in ODEs.- 7.1 Introduction to Bifurcation.- 7.2 Bifurcation in a Differential Equation Containing One Parameter.- 7.3 The Programs Bifl and Bif1G.- 7.4 Problems.- 7.5 Bifurcation in a Differential Equation Depending on Two Parameters.- 7.6 The Programs Bif2 and Bif2G.- 7.7 Problems.- 7.8 Hopf’sBifurcation.- 7.9 The Program HopfBif.- 7.10 Problems.- 8 The Lindstedt-Poincaré Method.- 8.1 Asymptotic Expansions.- 8.2 The Lindstedt-Poincaré Method.- 8.3 The Programs LindPoinc and GLindPoinc.- 8.4 Problems.- 9 Boundary-Value Problems for Second-Order ODEs.- 9.1 Boundary-Value Problems and Bernstein’s Theorem.- 9.2 The Shooting Method.- 9.3 The Program NBoundary.- 9.4 The Finite Difference Method.- 9.5 The Programs NBoundaryl and NBoundary2.- 9.6 Problems.- 10 Rigid Body with a Fixed Point.- 10.1 Introduction.- 10.2 Euler’s Equations.- 10.3 Free Rotations or Poinsot’s Motions.- 10.4 Heavy Gyroscope.- 10.5 The Gyroscopic Effect.- 10.6 The Program Poinsot.- 10.7 The Program Solid.- 10.8 Problems.- A How to Use the Package ODE.m.- References.
Caracteristici
Includes supplementary material: sn.pub/extras