Relative Homological Algebra
Autor Overtoun M. G. Jenda, Edgar E. Enochsen Limba Engleză Hardback – 18 aug 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (3) | 735.02 lei 3-5 săpt. | |
| De Gruyter – 21 mar 2000 | 735.02 lei 3-5 săpt. | |
| De Gruyter – 17 oct 2011 | 1378.16 lei 6-8 săpt. | |
| De Gruyter – 18 aug 2011 | 1468.06 lei 6-8 săpt. |
Preț: 1468.06 lei
Preț vechi: 1906.58 lei
-23%
Puncte Express: 2202
Preț estimativ în valută:
259.62€ • 304.66$ • 225.18£
259.62€ • 304.66$ • 225.18£
Carte tipărită la comandă
Livrare economică 10-24 martie
Specificații
ISBN-13: 9783110215229
ISBN-10: 3110215225
Pagini: 108
Ilustrații: Illustrations
Dimensiuni: 175 x 246 x 12 mm
Greutate: 0.38 kg
Ediția:1. Auflage
Editura: De Gruyter
Locul publicării:Berlin/Boston
ISBN-10: 3110215225
Pagini: 108
Ilustrații: Illustrations
Dimensiuni: 175 x 246 x 12 mm
Greutate: 0.38 kg
Ediția:1. Auflage
Editura: De Gruyter
Locul publicării:Berlin/Boston
Notă biografică
Edgar E. Enochs, University of Kentucky, Lexington, USA; Overtoun M. G. Jenda, Auburn University, Alabama, USA.
Cuprins
AD> Dedication Preface
Chapter I: Complexes of Modules 1. Definitions and basic constructions 2. Complexes formed from Modules 3. Free Complexes 4. Projective and Injective Complexes
Chapter II: Short Exact Sequences of Complexe 1. The groups Extn(C, D) 2. The Group Ext1(C, D) 3. The Snake Lemma for Complexes 4. Mapping Cones
Chapter III: The Category K(R-Mod) 1. Homotopies 2. The category K(R-Mod) 3. Split short exact sequences 4. The complexes Hom(C, D) 5. The Koszul Complex
Chapter IV: Cotorsion Pairs and Triplets in C(R-Mod) 1. Cotorsion Pairs 2. Cotorsion triplets 3. The Dold triplet 4. More on cotorsion pairs and triplets
Chapter V: Adjoint Functors 1. Adjoint functors
Chapter VI: Model Structures 1. Model Structures on C(R-Mod)
Chapter VII: Creating Cotorsion Pairs 1. Creating Cotorsion pairs in C(R-Mod) in a Termwise Manner 2. The Hill lemma 3. More cotorsion pairs 4. More Hovey pairs
Chapter VIII: Minimal Complexes 1. Minimal resolutions 2. Decomposing a complex
Chapter IX: Cartan and Eilenberg Resolutions 1. Cartan-Eilenberg Projective Complexes 2. Cartan and Eilenberg Projective resolutions 3. C - E injective complexes and resolutions 4. Cartan and Eilenberg Balance
Bibliographical Notes References Index
Chapter I: Complexes of Modules 1. Definitions and basic constructions 2. Complexes formed from Modules 3. Free Complexes 4. Projective and Injective Complexes
Chapter II: Short Exact Sequences of Complexe 1. The groups Extn(C, D) 2. The Group Ext1(C, D) 3. The Snake Lemma for Complexes 4. Mapping Cones
Chapter III: The Category K(R-Mod) 1. Homotopies 2. The category K(R-Mod) 3. Split short exact sequences 4. The complexes Hom(C, D) 5. The Koszul Complex
Chapter IV: Cotorsion Pairs and Triplets in C(R-Mod) 1. Cotorsion Pairs 2. Cotorsion triplets 3. The Dold triplet 4. More on cotorsion pairs and triplets
Chapter V: Adjoint Functors 1. Adjoint functors
Chapter VI: Model Structures 1. Model Structures on C(R-Mod)
Chapter VII: Creating Cotorsion Pairs 1. Creating Cotorsion pairs in C(R-Mod) in a Termwise Manner 2. The Hill lemma 3. More cotorsion pairs 4. More Hovey pairs
Chapter VIII: Minimal Complexes 1. Minimal resolutions 2. Decomposing a complex
Chapter IX: Cartan and Eilenberg Resolutions 1. Cartan-Eilenberg Projective Complexes 2. Cartan and Eilenberg Projective resolutions 3. C - E injective complexes and resolutions 4. Cartan and Eilenberg Balance
Bibliographical Notes References Index