Cantitate/Preț
Produs

Relative Homological Algebra

Autor Overtoun M. G. Jenda, Edgar E. Enochs
en Limba Engleză Hardback – 18 aug 2011
This second volume deals with the relative homological algebra of complexes of modules and their applications. It is a concrete and easy introduction to the kind of homological algebra which has been developed in the last 50 years. The book serves as a bridge between the traditional texts on homological algebra and more advanced topics such as triangulated and derived categories or model category structures. It addresses to readers who have had a course in classical homological algebra, as well as to researchers.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (3) 73502 lei  3-5 săpt.
  De Gruyter – 21 mar 2000 73502 lei  3-5 săpt.
  De Gruyter – 17 oct 2011 137816 lei  6-8 săpt.
  De Gruyter – 18 aug 2011 146806 lei  6-8 săpt.

Preț: 146806 lei

Preț vechi: 190658 lei
-23%

Puncte Express: 2202

Preț estimativ în valută:
25962 30466$ 22518£

Carte tipărită la comandă

Livrare economică 10-24 martie


Specificații

ISBN-13: 9783110215229
ISBN-10: 3110215225
Pagini: 108
Ilustrații: Illustrations
Dimensiuni: 175 x 246 x 12 mm
Greutate: 0.38 kg
Ediția:1. Auflage
Editura: De Gruyter
Locul publicării:Berlin/Boston

Notă biografică

Edgar E. Enochs, University of Kentucky, Lexington, USA; Overtoun M. G. Jenda, Auburn University, Alabama, USA.

Cuprins

AD>Dedication Preface
Chapter I: Complexes of Modules 1. Definitions and basic constructions 2. Complexes formed from Modules 3. Free Complexes 4. Projective and Injective Complexes
Chapter II: Short Exact Sequences of Complexe 1. The groups Extn(C, D) 2. The Group Ext1(C, D) 3. The Snake Lemma for Complexes 4. Mapping Cones
Chapter III: The Category K(R-Mod) 1. Homotopies 2. The category K(R-Mod) 3. Split short exact sequences 4. The complexes Hom(C, D) 5. The Koszul Complex
Chapter IV: Cotorsion Pairs and Triplets in C(R-Mod) 1. Cotorsion Pairs 2. Cotorsion triplets 3. The Dold triplet 4. More on cotorsion pairs and triplets
Chapter V: Adjoint Functors 1. Adjoint functors
Chapter VI: Model Structures 1. Model Structures on C(R-Mod)
Chapter VII: Creating Cotorsion Pairs 1. Creating Cotorsion pairs in C(R-Mod) in a Termwise Manner 2. The Hill lemma 3. More cotorsion pairs 4. More Hovey pairs
Chapter VIII: Minimal Complexes 1. Minimal resolutions 2. Decomposing a complex
Chapter IX: Cartan and Eilenberg Resolutions 1. Cartan-Eilenberg Projective Complexes 2. Cartan and Eilenberg Projective resolutions 3. C - E injective complexes and resolutions 4. Cartan and Eilenberg Balance
Bibliographical Notes References Index