Relative Homological Algebra: De Gruyter Expositions in Mathematics, cartea 30
Autor Edgar E. Enochs, Overtoun M. G. Jendaen Mixed media product – 31 dec 1999
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (3) | 814.73 lei 38-45 zile | |
| De Gruyter – 21 mar 2000 | 814.73 lei 38-45 zile | |
| De Gruyter – 17 oct 2011 | 1378.16 lei 6-8 săpt. | |
| De Gruyter – 18 aug 2011 | 1468.06 lei 6-8 săpt. |
Din seria De Gruyter Expositions in Mathematics
- 9%
Preț: 1560.69 lei - 9%
Preț: 1051.28 lei - 9%
Preț: 1347.85 lei - 23%
Preț: 1045.44 lei - 23%
Preț: 1042.02 lei - 23%
Preț: 1325.75 lei - 23%
Preț: 1188.39 lei - 23%
Preț: 1700.49 lei - 23%
Preț: 1558.00 lei - 23%
Preț: 1415.85 lei - 23%
Preț: 1191.47 lei - 23%
Preț: 1479.91 lei - 23%
Preț: 1628.74 lei - 23%
Preț: 1190.64 lei - 23%
Preț: 1262.67 lei - 23%
Preț: 1635.86 lei - 23%
Preț: 1037.91 lei - 23%
Preț: 1257.27 lei - 23%
Preț: 1404.88 lei - 23%
Preț: 1544.47 lei - 23%
Preț: 1626.19 lei - 9%
Preț: 1370.54 lei - 23%
Preț: 1628.33 lei - 23%
Preț: 1038.04 lei - 24%
Preț: 814.73 lei - 23%
Preț: 1618.06 lei - 23%
Preț: 1628.89 lei - 23%
Preț: 1546.87 lei - 23%
Preț: 1035.21 lei - 23%
Preț: 1371.21 lei - 9%
Preț: 1071.99 lei - 23%
Preț: 2059.72 lei - 23%
Preț: 1565.26 lei - 23%
Preț: 1785.50 lei - 9%
Preț: 1418.56 lei - 9%
Preț: 1055.29 lei - 9%
Preț: 1111.71 lei - 23%
Preț: 2010.44 lei - 23%
Preț: 1852.28 lei - 23%
Preț: 1696.45 lei - 9%
Preț: 1165.20 lei - 23%
Preț: 1592.73 lei - 23%
Preț: 1481.32 lei - 23%
Preț: 1472.65 lei - 23%
Preț: 1475.19 lei - 23%
Preț: 1578.34 lei - 23%
Preț: 1686.49 lei - 23%
Preț: 1694.18 lei - 9%
Preț: 1087.09 lei
Preț: 1094.35 lei
Preț vechi: 1499.11 lei
-27% Nou
Puncte Express: 1642
Preț estimativ în valută:
193.65€ • 227.08$ • 170.07£
193.65€ • 227.08$ • 170.07£
Carte indisponibilă temporar
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783111752037
ISBN-10: 3111752038
Ilustrații: Includes a print version and an ebook
Ediția:
Editura: De Gruyter
Seria De Gruyter Expositions in Mathematics
Locul publicării:Berlin/Boston
ISBN-10: 3111752038
Ilustrații: Includes a print version and an ebook
Ediția:
Editura: De Gruyter
Seria De Gruyter Expositions in Mathematics
Locul publicării:Berlin/Boston
Notă biografică
Edgar E. Enochs, University of Kentucky, Lexington, USA; Overtoun M. G. Jenda, Auburn University, Alabama, USA.
Cuprins
AD> Dedication Preface
Chapter I: Complexes of Modules 1. Definitions and basic constructions 2. Complexes formed from Modules 3. Free Complexes 4. Projective and Injective Complexes
Chapter II: Short Exact Sequences of Complexe 1. The groups Extn(C, D) 2. The Group Ext1(C, D) 3. The Snake Lemma for Complexes 4. Mapping Cones
Chapter III: The Category K(R-Mod) 1. Homotopies 2. The category K(R-Mod) 3. Split short exact sequences 4. The complexes Hom(C, D) 5. The Koszul Complex
Chapter IV: Cotorsion Pairs and Triplets in C(R-Mod) 1. Cotorsion Pairs 2. Cotorsion triplets 3. The Dold triplet 4. More on cotorsion pairs and triplets
Chapter V: Adjoint Functors 1. Adjoint functors
Chapter VI: Model Structures 1. Model Structures on C(R-Mod)
Chapter VII: Creating Cotorsion Pairs 1. Creating Cotorsion pairs in C(R-Mod) in a Termwise Manner 2. The Hill lemma 3. More cotorsion pairs 4. More Hovey pairs
Chapter VIII: Minimal Complexes 1. Minimal resolutions 2. Decomposing a complex
Chapter IX: Cartan and Eilenberg Resolutions 1. Cartan-Eilenberg Projective Complexes 2. Cartan and Eilenberg Projective resolutions 3. C - E injective complexes and resolutions 4. Cartan and Eilenberg Balance
Bibliographical Notes References Index
Chapter I: Complexes of Modules 1. Definitions and basic constructions 2. Complexes formed from Modules 3. Free Complexes 4. Projective and Injective Complexes
Chapter II: Short Exact Sequences of Complexe 1. The groups Extn(C, D) 2. The Group Ext1(C, D) 3. The Snake Lemma for Complexes 4. Mapping Cones
Chapter III: The Category K(R-Mod) 1. Homotopies 2. The category K(R-Mod) 3. Split short exact sequences 4. The complexes Hom(C, D) 5. The Koszul Complex
Chapter IV: Cotorsion Pairs and Triplets in C(R-Mod) 1. Cotorsion Pairs 2. Cotorsion triplets 3. The Dold triplet 4. More on cotorsion pairs and triplets
Chapter V: Adjoint Functors 1. Adjoint functors
Chapter VI: Model Structures 1. Model Structures on C(R-Mod)
Chapter VII: Creating Cotorsion Pairs 1. Creating Cotorsion pairs in C(R-Mod) in a Termwise Manner 2. The Hill lemma 3. More cotorsion pairs 4. More Hovey pairs
Chapter VIII: Minimal Complexes 1. Minimal resolutions 2. Decomposing a complex
Chapter IX: Cartan and Eilenberg Resolutions 1. Cartan-Eilenberg Projective Complexes 2. Cartan and Eilenberg Projective resolutions 3. C - E injective complexes and resolutions 4. Cartan and Eilenberg Balance
Bibliographical Notes References Index