Ramified Integrals, Singularities and Lacunas: Mathematics and Its Applications, cartea 315
Autor V.A. Vassilieven Limba Engleză Paperback – 13 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 374.54 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 13 oct 2012 | 374.54 lei 6-8 săpt. | |
| Hardback (1) | 381.55 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 noi 1994 | 381.55 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 926.23 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei -
Preț: 371.00 lei - 15%
Preț: 614.24 lei - 15%
Preț: 629.85 lei - 18%
Preț: 876.15 lei
Preț: 374.54 lei
Nou
Puncte Express: 562
Preț estimativ în valută:
66.28€ • 77.72$ • 58.20£
66.28€ • 77.72$ • 58.20£
Carte tipărită la comandă
Livrare economică 16 februarie-02 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401040952
ISBN-10: 9401040958
Pagini: 316
Ilustrații: XVII, 294 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401040958
Pagini: 316
Ilustrații: XVII, 294 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I. Picard—Lefschetz—Pham theory and singularity theory.- § 1. Gauss-Manin connection in the homological bundles. Monodromy and variation operators.- § 2. The Picard-Lefschetz formula. The Leray tube operator.- § 3. Local monodromy of isolated singularities of holomorphic functions.- § 4. Intersection form and complex conjugation in the vanishing homology of real singularities in two variables.- § 5. Classification of real and complex singularities of functions.- § 6. Lyashko-Looijenga covering and its generalizations.- § 7. Complements of discriminants of real simple singularities (after E. Looijenga).- § 8. Stratifications. Semialgebraic, semianalytic and subanalytic sets.- § 9. Pham’s formulae.- § 10. Monodromy of hyperplane sections.- § 11. Stabilization of local monodromy and variation of hyperplane sections close to strata of positive dimension (stratified Picard-Lefschetz theory).- § 12. Homology of local systems. Twisted Picard-Lefschetz formulae.- § 13. Singularities of complete intersections and their local monodromy groups.- II. Newton’s theorem on the nonintegrability of ovals.- § 1. Stating the problems and the main results.- § 2. Reduction of the integrability problem to the (generalized) PicardLefschetz theory.- § 3. The element “cap”.- § 4. Ramification of integration cycles close to nonsingular points. Generating functions and generating families of smooth hypersurfaces.- § 5. Obstructions to integrability arising from the cuspidal edges. Proof of Theorem 1.8.- § 6. Obstructions to integrability arising from the asymptotic hyperplanes. Proof of Theorem 1.9.- § 7. Several open problems.- III. Newton’s potential of algebraic layers.- § 1. Theorems of Newton and Ivory.- § 2. Potentials of hyperbolic layers are polynomialin the hyperbolicity domains (after Arnold and Givental).- § 3. Proofs of Main Theorems 1 and 2.- § 4. Description of the small monodromy group.- § 5. Proof of Main Theorem 3.- IV. Lacunas and the local Petrovski$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I}$$ condition for hyperbolic differential operators with constant coefficients.- § 0. Hyperbolic polynomials.- § 1. Hyperbolic operators and hyperbolic polynomials. Sharpness, diffusion and lacunas.- § 2. Generating functions and generating families of wave fronts for hyperbolic operators with constant coefficients. Classification of the singular points of wave fronts.- § 3. Local lacunas close to nonsingular points of fronts and to singularities A2, A3 (after Davydova, Borovikov and Gárding).- § 4. Petrovskii and Leray cycles. The Herglotz-Petrovskii—Leray formula and the Petrovskii condition for global lacunas.- § 5. Local Petrovskii condition and local Petrovskii cycle. The local Petrovskii condition implies sharpness (after Atiyah, Bott and Gárding).- § 6. Sharpness implies the local Petrovskii condition close to discrete-type points of wave fronts of strictly hyperbolic operators.- § 7. The local Petrovskii condition may be stronger than the sharpness close to singular points not of discrete type.- § 8. Normal forms of nonsharpness close to singularities of wave fronts (after A.N. Varchenko).- § 9. Several problems.- V. Calculation of local Petrovski$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{I}$$ cycles and enumeration of local lacunas close to real function singularities.- § 1. Main theorems.- § 2. Local lacunas close to singularities from the classification tables.- § 3. Calculation of the even local Petrovskii class.- § 4. Calculation of theodd local Petrovskii class.- § 5. Stabilization of the local Petrovskii classes. Proof of Theorem 1.5.- § 6. Local lacunas close to simple singularities.- § 7. Geometrical criterion for sharpness close to simple singularities.- § 8. A program for counting topologically different morsifications of a real singularity.- § 9. More detailed description of the algorithm.- Appendix: a FORTRAN program searching for the lacunas and enumerating the morsifications of real function singularities.