Permutation Groups: Graduate Texts in Mathematics, cartea 163
Autor John D. Dixon, Brian Mortimeren Limba Engleză Hardback – 11 apr 1996
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 440.93 lei 6-8 săpt. | |
| Springer – 30 sep 2012 | 440.93 lei 6-8 săpt. | |
| Hardback (1) | 569.15 lei 6-8 săpt. | |
| Springer – 11 apr 1996 | 569.15 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.31 lei - 15%
Preț: 388.39 lei - 17%
Preț: 396.78 lei -
Preț: 417.32 lei -
Preț: 397.09 lei -
Preț: 260.98 lei - 15%
Preț: 485.89 lei - 15%
Preț: 466.31 lei -
Preț: 391.33 lei -
Preț: 433.17 lei - 15%
Preț: 395.33 lei - 17%
Preț: 570.66 lei -
Preț: 430.17 lei -
Preț: 423.44 lei - 15%
Preț: 395.33 lei -
Preț: 425.27 lei - 17%
Preț: 431.72 lei -
Preț: 374.76 lei -
Preț: 439.55 lei - 15%
Preț: 585.17 lei - 15%
Preț: 573.07 lei -
Preț: 434.18 lei -
Preț: 484.64 lei -
Preț: 437.67 lei -
Preț: 313.64 lei - 17%
Preț: 395.83 lei - 15%
Preț: 464.09 lei - 15%
Preț: 469.94 lei -
Preț: 370.26 lei - 15%
Preț: 488.98 lei - 15%
Preț: 578.90 lei - 15%
Preț: 389.42 lei - 15%
Preț: 387.79 lei - 15%
Preț: 534.41 lei -
Preț: 432.53 lei -
Preț: 479.83 lei - 18%
Preț: 616.48 lei - 15%
Preț: 525.56 lei - 15%
Preț: 383.47 lei -
Preț: 363.82 lei - 15%
Preț: 394.36 lei - 15%
Preț: 392.05 lei - 15%
Preț: 393.01 lei - 15%
Preț: 394.35 lei - 15%
Preț: 393.06 lei - 15%
Preț: 628.10 lei - 15%
Preț: 393.56 lei - 15%
Preț: 430.05 lei
Preț: 569.15 lei
Preț vechi: 669.60 lei
-15% Nou
Puncte Express: 854
Preț estimativ în valută:
100.73€ • 118.13$ • 88.32£
100.73€ • 118.13$ • 88.32£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387945996
ISBN-10: 0387945997
Pagini: 348
Ilustrații: XII, 348 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.64 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387945997
Pagini: 348
Ilustrații: XII, 348 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.64 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1. The Basic Ideas.- 1.1. Symmetry.- 1.2. Symmetric Groups.- 1.3. Group Actions.- 1.4. Orbits and Stabilizers.- 1.5. Blocks and Primitivity.- 1.6. Permutation Representations and Normal Subgroups.- 1.7. Orbits and Fixed Points.- 1.8. Some Examples from the Early History of Permutation Groups.- 1.9. Notes.- 2. Examples and Constructions.- 2.1. Actions on k-tuples and Subsets.- 2.2. Automorphism Groups of Algebraic Structures.- 2.3. Graphs.- 2.4. Relations.- 2.5. Semidirect Products.- 2.6. Wreath Products and Imprimitive Groups.- 2.7. Primitive Wreath Products.- 2.8. Affine and Projective Groups.- 2.9. The Transitive Groups of Degree at Most 7.- 2.10. Notes.- 3. The Action of a Permutation Group.- 3.1. Introduction.- 3.2. Orbits of the Stabilizer.- 3.3. Minimal Degree and Bases.- 3.4. Frobenius Groups.- 3.5. Permutation Groups Which Contain a Regular Subgroup.- 3.6. Computing in Permutation Groups.- 3.7. Notes.- 4. The Structure of a Primitive Group.- 4.1. Introduction.- 4.2. Centralizers and Normalizers in the Symmetric Group.- 4.3. The Socle.- 4.4. Subnormal Subgroups and Primitive Groups.- 4.5. Constructions of Primitive Groups with Nonregular Socles.- 4.6. Finite Primitive Groups with Nonregular Socles.- 4.7. Primitive Groups with Regular Socles.- 4.8. Applications of the O’Nan-Scott Theorem.- 4.9. Notes.- 5. Bounds on Orders of Permutation Groups.- 5.1. Orders of Elements.- 5.2. Subgroups of Small Index in Finite Alternating and Symmetric Groups.- 5.3. The Order of a Simply Primitive Group.- 5.4. The Minimal Degree of a 2-transitive Group.- 5.5. The Alternating Group as a Section of a Permutation Group.- 5.6. Bases and Orders of 2-transitive Groups.- 5.7. The Alternating Group as a Section of a Linear Group.- 5.8. Small Subgroups of Sn.- 5.9. Notes.- 6. The MathieuGroups and Steiner Systems.- 6.1. The Mathieu Groups.- 6.2. Steiner Systems.- 6.3. The Extension of AG2(3).- 6.4. The Mathieu Groups M11and M12.- 6.5. The Geometry of PG2(4).- 6.6. The Extension of PG2(4) and the Group M22.- 6.7. The Mathieu Groups M23and M24.- 6.8. The Geometry of W24.- 6.9. Notes.- 7. Multiply Transitive Groups.- 7.1. Introduction.- 7.2. Normal Subgroups.- 7.3. Limits to Multiple Transitivity.- 7.4. Jordan Groups.- 7.5. Transitive Extensions.- 7.6. Sharply k-transitive Groups.- 7.7. The Finite 2-transitive Groups.- 7.8. Notes.- 8. The Structure of the Symmetric Groups.- 8.1. The Normal Structure of Sym(?).- 8.2. The Automorphisms of Sym(?).- 8.3. Subgroups of F Sym(?).- 8.4. Subgroups of Small Index in Sym(?).- 8.5. Maximal Subgroups of the Symmetric Groups.- 8.6. Notes.- 9. Examples and Applications of Infinite Permutation Groups.- 9.1. The Construction of a Finitely Generated Infinite p-group.- 9.2. Groups Acting on Trees.- 9.3. Highly Transitive Free Subgroups of the Symmetric Group.- 9.4. Homogeneous Groups.- 9.5. Automorphisms of Relational Structures.- 9.6. The Universal Graph.- 9.7. Notes.- Appendix A. Classification of Finite Simple Groups.- Appendix B. The Primitive Permutation Groups of Degree Less than 1000.- References.