Penalising Brownian Paths
Autor Bernard Roynette, Marc Yoren Limba Engleză Paperback – 25 mar 2009
Preț: 374.84 lei
Nou
Puncte Express: 562
Preț estimativ în valută:
66.33€ • 77.78$ • 58.25£
66.33€ • 77.78$ • 58.25£
Carte tipărită la comandă
Livrare economică 12-26 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540896982
ISBN-10: 3540896988
Pagini: 296
Ilustrații: XIII, 275 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:2009
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540896988
Pagini: 296
Ilustrații: XIII, 275 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:2009
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Some penalisations of theWiener measure.- Feynman-Kac penalisations for Brownian motion.- Penalisations of a Bessel process with dimension d(0 d 2) by a function of the ranked lengths of its excursions.- A general principle and some questions about penalisations.
Recenzii
From the reviews:“In this book the authors give a systematic study of penalisation. The book is divided into 5 chapters. … This book is very useful for graduate students and researchers interested in learning penalisations.” (Ren Ming Song, Mathematical Reviews, Issue 2010 e)
Textul de pe ultima copertă
Penalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one.
We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role.
A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account.
We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role.
A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account.