Cantitate/Preț
Produs

Partially Observed Markov Decision Processes

Autor Vikram Krishnamurthy
en Limba Engleză Hardback – 28 apr 2025
This survey of formulation, algorithms, and structural results in POMDPs focuses on underlying concepts and connections to real-world applications in controlled sensing, keeping technical machinery to a minimum. The new edition includes inverse reinforcement learning, non-parametric Bayesian inference, variational Bayes and conformal prediction.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (2) 65795 lei  6-8 săpt.
  Cambridge University Press – 20 mar 2016 65795 lei  6-8 săpt.
  Cambridge University Press – 28 apr 2025 72536 lei  6-8 săpt. +9154 lei  7-13 zile

Preț: 72536 lei

Preț vechi: 84344 lei
-14% Nou

Puncte Express: 1088

Preț estimativ în valută:
12833 14974$ 11220£

Carte tipărită la comandă

Livrare economică 17-31 ianuarie 26
Livrare express 13-19 decembrie pentru 10153 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781009449434
ISBN-10: 1009449435
Pagini: 652
Dimensiuni: 183 x 260 x 39 mm
Greutate: 1.34 kg
Ediția:2 Revised edition
Editura: Cambridge University Press

Cuprins

Preface; 1. Introduction; Part I. Stochastic Models and Bayesian Filtering: 2. Stochastic state-space models; 3. Optimal filtering; 4. Algorithms for maximum likelihood parameter estimation; 5. Multi-agent sensing: social learning and data incest; Part II. Partially Observed Markov Decision Processes. Models and Algorithms: 6. Fully observed Markov decision processes; 7. Partially observed Markov decision processes (POMDPs); 8. POMDPs in controlled sensing and sensor scheduling; Part III. Partially Observed Markov Decision Processes: 9. Structural results for Markov decision processes; 10. Structural results for optimal filters; 11. Monotonicity of value function for POMPDs; 12. Structural results for stopping time POMPDs; 13. Stopping time POMPDs for quickest change detection; 14. Myopic policy bounds for POMPDs and sensitivity to model parameters; Part IV. Stochastic Approximation and Reinforcement Learning: 15. Stochastic optimization and gradient estimation; 16. Reinforcement learning; 17. Stochastic approximation algorithms: examples; 18. Summary of algorithms for solving POMPDs; Appendix A. Short primer on stochastic simulation; Appendix B. Continuous-time HMM filters; Appendix C. Markov processes; Appendix D. Some limit theorems; Bibliography; Index.

Notă biografică