Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing
Autor Vikram Krishnamurthyen Limba Engleză Hardback – 20 mar 2016
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (2) | 657.95 lei 6-8 săpt. | |
| Cambridge University Press – 20 mar 2016 | 657.95 lei 6-8 săpt. | |
| Cambridge University Press – 28 apr 2025 | 725.36 lei 6-8 săpt. | +91.54 lei 6-12 zile |
Preț: 657.95 lei
Preț vechi: 739.27 lei
-11% Nou
Puncte Express: 987
Preț estimativ în valută:
116.43€ • 135.78$ • 102.23£
116.43€ • 135.78$ • 102.23£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107134607
ISBN-10: 1107134609
Pagini: 488
Ilustrații: 47 b/w illus. 5 tables
Dimensiuni: 180 x 254 x 25 mm
Greutate: 1.15 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107134609
Pagini: 488
Ilustrații: 47 b/w illus. 5 tables
Dimensiuni: 180 x 254 x 25 mm
Greutate: 1.15 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Preface; 1. Introduction; Part I. Stochastic Models and Bayesian Filtering: 2. Stochastic state-space models; 3. Optimal filtering; 4. Algorithms for maximum likelihood parameter estimation; 5. Multi-agent sensing: social learning and data incest; Part II. Partially Observed Markov Decision Processes. Models and Algorithms: 6. Fully observed Markov decision processes; 7. Partially observed Markov decision processes (POMDPs); 8. POMDPs in controlled sensing and sensor scheduling; Part III. Partially Observed Markov Decision Processes: 9. Structural results for Markov decision processes; 10. Structural results for optimal filters; 11. Monotonicity of value function for POMPDs; 12. Structural results for stopping time POMPDs; 13. Stopping time POMPDs for quickest change detection; 14. Myopic policy bounds for POMPDs and sensitivity to model parameters; Part IV. Stochastic Approximation and Reinforcement Learning: 15. Stochastic optimization and gradient estimation; 16. Reinforcement learning; 17. Stochastic approximation algorithms: examples; 18. Summary of algorithms for solving POMPDs; Appendix A. Short primer on stochastic simulation; Appendix B. Continuous-time HMM filters; Appendix C. Markov processes; Appendix D. Some limit theorems; Bibliography; Index.
Notă biografică
Descriere
This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, linking theory to real-world applications in controlled sensing.