Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Autor Muhammet Ünal, Ayça Ak, Vedat Topuz, Hasan Erdalen Limba Engleză Hardback – 8 sep 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 611.65 lei 43-57 zile | |
| Springer Berlin, Heidelberg – 15 oct 2014 | 611.65 lei 43-57 zile | |
| Hardback (1) | 617.68 lei 43-57 zile | |
| Springer – 8 sep 2012 | 617.68 lei 43-57 zile |
Preț: 617.68 lei
Preț vechi: 772.10 lei
-20% Nou
Puncte Express: 927
Preț estimativ în valută:
109.30€ • 128.17$ • 95.99£
109.30€ • 128.17$ • 95.99£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642328992
ISBN-10: 3642328997
Pagini: 108
Ilustrații: XX, 88 p.
Dimensiuni: 160 x 241 x 11 mm
Greutate: 0.34 kg
Ediția:2013
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642328997
Pagini: 108
Ilustrații: XX, 88 p.
Dimensiuni: 160 x 241 x 11 mm
Greutate: 0.34 kg
Ediția:2013
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Artificial Neural Networks.- Genetic Algorithm.- Ant Colony Optimization (ACO).- An Application for Process System Control.
Textul de pe ultima copertă
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.
Caracteristici
Novel optimization methods for process system control A novel real time control algorithm, that uses Genetic Algorithm (GA) and Ant Colony Optimization (ACO) algorithm for optimizing PID controller parameters Artificial neural networks for modelling complex and non-linear systems