Numerical Analysis: Graduate Texts in Mathematics, cartea 181
Autor Rainer Kressen Limba Engleză Hardback – 17 apr 1998
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 473.38 lei 6-8 săpt. | |
| Springer – 27 sep 2012 | 473.38 lei 6-8 săpt. | |
| Hardback (1) | 513.20 lei 6-8 săpt. | |
| Springer – 17 apr 1998 | 513.20 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei - 15%
Preț: 466.31 lei -
Preț: 380.44 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.35 lei - 15%
Preț: 391.74 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei - 15%
Preț: 393.25 lei - 17%
Preț: 396.00 lei -
Preț: 445.45 lei - 15%
Preț: 388.38 lei - 15%
Preț: 576.36 lei -
Preț: 542.93 lei -
Preț: 449.96 lei -
Preț: 450.27 lei -
Preț: 432.82 lei -
Preț: 260.78 lei -
Preț: 391.02 lei - 15%
Preț: 571.96 lei - 15%
Preț: 569.57 lei - 15%
Preț: 559.25 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 477.42 lei -
Preț: 418.37 lei -
Preț: 374.48 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei -
Preț: 373.03 lei - 15%
Preț: 487.42 lei - 15%
Preț: 567.43 lei -
Preț: 444.79 lei - 40%
Preț: 344.12 lei
Preț: 513.20 lei
Preț vechi: 603.76 lei
-15%
Puncte Express: 770
Preț estimativ în valută:
90.73€ • 107.59$ • 78.70£
90.73€ • 107.59$ • 78.70£
Carte tipărită la comandă
Livrare economică 11-25 martie
Specificații
ISBN-13: 9780387984087
ISBN-10: 0387984089
Pagini: 326
Ilustrații: XII, 326 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:1998
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387984089
Pagini: 326
Ilustrații: XII, 326 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:1998
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 Introduction.- 2 Linear Systems.- 2.1 Examples for Systems of Equations.- 2.2 Gaussian Elimination.- 2.3 LR Decomposition.- 2.4 QR Decomposition.- Problems.- 3 Basic Functional Analysis.- 3.1 Normed Spaces.- 3.2 Scalar Products.- 3.3 Bounded Linear Operators.- 3.4 Matrix Norms.- 3.5 Completeness.- 3.6 The Banach Fixed Point Theorem.- 3.7 Best Approximation.- Problems.- 4 Iterative Methods for Linear Systems.- 4.1 Jacobi and Gauss—Seidel Iterations.- 4.2 Relaxation Methods.- 4.3 Two-Grid Methods.- Problems.- 5 Ill-Conditioned Linear Systems.- 5.1 Condition Number.- 5.2 Singular Value Decomposition.- 5.3 Tikhonov Regularization.- Problems.- 6 Iterative Methods for Nonlinear Systems.- 6.1 Successive Approximations.- 6.2 Newton’s Method.- 6.3 Zeros of Polynomials.- 6.4 Least Squares Problems.- Problems.- 7 Matrix Eigenvalue Problems.- 7.1 Examples.- 7.2 Estimates for the Eigenvalues.- 7.3 The Jacobi Method.- 7.4 The QR Algorithm.- 7.5 Hessenberg Matrices.- Problems.- 8 Interpolation.- 8.1 Polynomial Interpolation.- 8.2 Trigonometric Interpolation.- 8.3 Spline Interpolation.- 8.4 Bézier Polynomials.- Problems.- 9 Numerical Integration.- 9.1 Interpolatory Quadratures.- 9.2 Convergence of Quadrature Formulae.- 9.3 Gaussian Quadrature Formulae.- 9.4 Quadrature of Periodic Functions.- 9.5 Romberg Integration.- 9.6 Improper Integrals.- Problems.- 10 Initial Value Problems.- 10.1 The Picard—Lindelöf Theorem.- 10.2 Euler’s Method.- 10.3 Single-Step Methods.- 10.4 Multistep Methods.- Problems.- 11 Boundary Value Problems.- 11.1 Shooting Methods.- 11.2 Finite Difference Methods.- 11.3 The Riesz and Lax-Milgram Theorems.- 11.4 Weak Solutions.- 11.5 The Finite Element Method.- Problems.- 12 Integral Equations.- 12.1 The Riesz Theory.- 12.2 Operator Approximations.- 12.3 Nyström’s Method.- 12.4 The Collocation Method.- 12.5 Stability.- Problems.- References.
Caracteristici
Good introduction to an area experiencing rapid development for those in math, physics, and engineering. Gives a solid foundation by restricting the presentation to the basic principles and procedures, as well as the primary numerical algorithms. Includes the necessary functional analytic framework for a solid mathematical foundation in the subject. Gives particular emphasis to the question of stability. Presented in a concise and easily understandable fashion.