Nonlinear Approximation Theory: Springer Series in Computational Mathematics, cartea 7
Autor Dietrich Braessen Limba Engleză Paperback – oct 2011
Din seria Springer Series in Computational Mathematics
- 15%
Preț: 478.52 lei - 18%
Preț: 977.81 lei - 18%
Preț: 698.75 lei -
Preț: 388.57 lei -
Preț: 371.93 lei - 18%
Preț: 1344.60 lei -
Preț: 379.51 lei - 18%
Preț: 1341.56 lei - 18%
Preț: 754.11 lei - 20%
Preț: 957.51 lei - 24%
Preț: 688.04 lei - 15%
Preț: 624.14 lei -
Preț: 385.26 lei - 18%
Preț: 711.78 lei - 15%
Preț: 618.83 lei -
Preț: 366.19 lei - 18%
Preț: 869.63 lei - 18%
Preț: 974.87 lei - 18%
Preț: 1068.74 lei -
Preț: 378.95 lei - 18%
Preț: 911.19 lei - 15%
Preț: 624.95 lei - 15%
Preț: 632.63 lei - 15%
Preț: 501.54 lei - 15%
Preț: 634.54 lei - 18%
Preț: 1343.07 lei - 18%
Preț: 1082.55 lei - 18%
Preț: 1178.65 lei - 18%
Preț: 763.03 lei - 15%
Preț: 682.79 lei
Preț: 699.17 lei
Preț vechi: 852.65 lei
-18% Nou
Puncte Express: 1049
Preț estimativ în valută:
123.72€ • 145.27$ • 108.59£
123.72€ • 145.27$ • 108.59£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642648830
ISBN-10: 3642648835
Pagini: 308
Ilustrații: XIV, 290 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642648835
Pagini: 308
Ilustrații: XIV, 290 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.44 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Preliminaries.- § 1. Some Notation, Definitions and Basic Facts.- § 2. A Review of the Characterization of Nearest Points in Linear and Convex Sets.- § 3. Linear and Convex Chebyshev Approximation.- §4. L1-Approximation and Gaussian Quadrature Formulas.- II. Nonlinear Approximation: The Functional Analytic Approach.- §1. Approximative Properties of Arbitrary Sets.- §2. Solar Properties of Sets.- § 3. Properties of Chebyshev Sets.- III. Methods of Local Analysis.- §1. Critical Points.- §2. Nonlinear Approximation in Hilbert Spaces.- § 3. Varisolvency.- §4. Nonlinear Chebyshev Approximation: The Differentiable Case.- §5. The Gauss-Newton Method.- IV. Methods of Global Analysis.- §1. Preliminaries. Basic Ideas.- §2. The Uniqueness Theorem for Haar Manifolds.- §3. An Example with One Nonlinear Parameter.- V. Rational Approximation.- §1. Existence of Best Rational Approximations.- §2. Chebyshev Approximation by Rational Functions.- §3. Rational Interpolation.- §4. Padé Approximation andMoment Problems.- §5. The Degree of Rational Approximation.- §6. The Computation of Best Rational Approximations.- VI. Approximation by Exponential Sums.- §1. Basic Facts.- §2. Existence of Best Approximations.- §3. Some Facts on Interpolation and Approximation.- VII. Chebyshev Approximation by ?-Polynomials.- §1. Descartes Families.- §2. Approximation by Proper ?-Polynomials.- §3. Approximation by Extended ?-Polynomials: Elementary Theory.- §4. The Haar Manifold Gn\Gn?1.- §5. Local Best Approximations.- §6. Maximal Components.- §7. The Number of Local Best Approximations.- VIII. Approximation by Spline Functions with Free Nodes.- §1. Spline Functions with Fixed Nodes.- §2. Chebyshev Approximation by Spline Functions with Free Nodes.- §3. Monosplines of Least L?-Norm.- §4. Monosplines of Least L1-Norm.- §5. Monosplines of Least Lp-Norm.- Appendix. The Conjectures of Bernstein and Erdös.