Cantitate/Preț
Produs

Nonequilibrium Statistical Mechanics

Autor Byung Chan Eu
en Limba Engleză Hardback – 31 mar 1998
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids. The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics. The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium.
Audience: This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 91285 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 15 dec 2010 91285 lei  6-8 săpt.
Hardback (1) 91907 lei  6-8 săpt.
  Springer – 31 mar 1998 91907 lei  6-8 săpt.

Preț: 91907 lei

Preț vechi: 112081 lei
-18%

Puncte Express: 1379

Preț estimativ în valută:
16276 19009$ 14139£

Carte tipărită la comandă

Livrare economică 21 februarie-07 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792349808
ISBN-10: 0792349806
Pagini: 394
Ilustrații: XIV, 394 p.
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.75 kg
Ediția:1998 edition
Editura: Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1. Introduction. 2. Thermodynamics of Irreversible Processes. 3. Boltzmann Equation. 4. Equilibrium Solution and Local Variables. 5. Mathematical Preparation. 6. The Chapman-Enskog and Moment Methods. 7. Classical Nonequilibrium Ensemble Method. 8. Transport Processes in Fluids. 9. Quantum Nonequilibrium Ensemble Method. 10. Nonequilibrium Ensemble Method for Dense Fluids. A. Addition Theorem of Tensor Hermite Polynomials. B. Density Matrix and Evolution Equations. Index.