Cantitate/Preț
Produs

Nearrings

Autor G. Ferrero
en Limba Engleză Hardback – 31 oct 2002
This work presents new and old constructions of nearrings. Links between properties of the multiplicative of nearrings (as regularity conditions and identities) and the structure of nearrings are studied. Primality and minimality properties of ideals are collected. Some types of `simpler' nearrings are examined. Some nearrings of maps on a group are reviewed and linked with group-theoretical and geometrical questions.
Audience: Researchers working in nearring theory, group theory, semigroup theory, designs, and translation planes. Some of the material will be accessible to graduate students.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 149864 lei  6-8 săpt.
  Springer Us – 17 sep 2011 149864 lei  6-8 săpt.
Hardback (1) 150580 lei  6-8 săpt.
  Springer Us – 31 oct 2002 150580 lei  6-8 săpt.

Preț: 150580 lei

Preț vechi: 183635 lei
-18% Nou

Puncte Express: 2259

Preț estimativ în valută:
26646 31245$ 23401£

Carte tipărită la comandă

Livrare economică 09-23 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402008757
ISBN-10: 1402008759
Pagini: 611
Ilustrații: XX, 611 p.
Dimensiuni: 167 x 245 x 38 mm
Greutate: 1.09 kg
Ediția:2002 edition
Editura: Springer Us
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Elements.- 1.1 Notations and terminology.- 1.2 Definitions and first examples.- 1.3 Clay functions and elementary properties.- 1.4 Polynomial nearrings.- 1.5 Axiomatical and geometric questions.- 1.6 Ideals.- 1.7 Distributivity conditions.- 1.8 Maps.- 1.9 Modules.- 1.10 On radicals.- 1.11 Density and interpolation.- 1.12 Group and matrix nearrings.- 1.13 Quasi-local nearrings.- 1.14 Varieties.- 2. Constructions.- 2.1 Global constructions.- 2.2 Orbits of Clay semigroups.- 2.3 Syntactic nearrings.- 2.4 Deforming the product.- 2.5 Deforming the sum.- 3. Regularities.- 3.1 Idempotents in nearrings.- 3.2 Reduced nearrings.- 3.3 Regularity conditions.- 3.4 Regular and right strongly regular nearrings.- 3.5 Generalized nearfields.- 3.6 Stable and bipotent nearrings.- 3.7 Some nearrings are nearfields.- 4. Multiplicative Identities.- 4.1 Permutation identities.- 4.2 Commutativity conditions.- 4.3 Herstein’s condition.- 4.4 Particular periodic nearrings.- 4.5 Derivations.- 5. Prime and Minimal.- 5.1 Prime and semiprime ideals.- 5.2 M-systems.- 5.3 On hereditariness of the i-prime nearrings.- 5.4 Links among various types of primeness.- 5.5 Regularities and primenesses according to Grönewald and Olivier.- 5.6 A generalization of primary Nöther decomposition.- 5.7 Minimal ideals.- 6. “Simpler” Nearrings.- 6.1 Groups hosting only trivial nearrings.- 6.2 Strictly simple nearrings.- 6.3 On n-simple and n-strictly simple nearrings.- 6.4 Weakly divisible nearrings.- 6.5 H-integral nearrings.- 7. Maps.- 7.1 Generalizations of homomorphisms.- 7.2 Endomorphism nearrings.- 7.3 Endomorphism nearrings can be rings.- 7.4 Nearrings of maps with condition on the images.- 7.5 Coincidence problems.- 7.6 The isomorphism problem.- 8. Centralizers.- 8.1 Introductory remarks.- 8.2Homogeneous functions.- 8.3 On centralizers of a group of automorphisms.- 8.4 Covers and fibrations.- 8.5 Geometric remarks.