Multi-Objective Machine Learning: Studies in Computational Intelligence, cartea 16
Editat de Yaochu Jinen Limba Engleză Paperback – 22 noi 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 1186.57 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 22 noi 2010 | 1186.57 lei 6-8 săpt. | |
| Hardback (1) | 1192.79 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 10 feb 2006 | 1192.79 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 20%
Preț: 486.29 lei - 20%
Preț: 1009.02 lei - 20%
Preț: 1003.51 lei - 20%
Preț: 1025.34 lei - 20%
Preț: 1008.57 lei - 20%
Preț: 1008.34 lei - 20%
Preț: 1124.84 lei - 18%
Preț: 2403.93 lei - 20%
Preț: 1400.58 lei - 20%
Preț: 1119.57 lei - 20%
Preț: 1120.92 lei - 20%
Preț: 1119.32 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 562.99 lei - 20%
Preț: 1114.70 lei - 20%
Preț: 1010.18 lei - 20%
Preț: 1121.38 lei - 20%
Preț: 1006.97 lei - 20%
Preț: 1113.80 lei - 18%
Preț: 1356.02 lei - 20%
Preț: 957.11 lei - 20%
Preț: 1002.56 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 323.19 lei - 20%
Preț: 1240.82 lei - 18%
Preț: 1173.68 lei - 18%
Preț: 609.96 lei - 20%
Preț: 624.19 lei - 20%
Preț: 1517.38 lei - 20%
Preț: 618.64 lei - 20%
Preț: 632.09 lei - 20%
Preț: 951.51 lei - 20%
Preț: 1388.21 lei - 20%
Preț: 1005.40 lei - 20%
Preț: 950.72 lei - 20%
Preț: 1002.26 lei - 20%
Preț: 1403.26 lei - 18%
Preț: 1185.81 lei - 20%
Preț: 1010.58 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1225.75 lei - 20%
Preț: 1109.26 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1124.27 lei - 20%
Preț: 1117.15 lei - 20%
Preț: 1118.77 lei - 18%
Preț: 966.67 lei - 20%
Preț: 1014.90 lei - 20%
Preț: 1234.45 lei
Preț: 1186.57 lei
Preț vechi: 1447.04 lei
-18% Nou
Puncte Express: 1780
Preț estimativ în valută:
209.96€ • 246.54$ • 184.29£
209.96€ • 246.54$ • 184.29£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642067969
ISBN-10: 3642067964
Pagini: 676
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.93 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642067964
Pagini: 676
Ilustrații: XIV, 660 p. 254 illus.
Dimensiuni: 155 x 235 x 35 mm
Greutate: 0.93 kg
Ediția:Softcover reprint of hardcover 1st ed. 2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Multi-Objective Clustering, Feature Extraction and Feature Selection.- Feature Selection Using Rough Sets.- Multi-Objective Clustering and Cluster Validation.- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach.- Feature Extraction Using Multi-Objective Genetic Programming.- Multi-Objective Learning for Accuracy Improvement.- Regression Error Characteristic Optimisation of Non-Linear Models.- Regularization for Parameter Identification Using Multi-Objective Optimization.- Multi-Objective Algorithms for Neural Networks Learning.- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming.- Multi-Objective Optimization of Support Vector Machines.- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design.- Minimizing Structural Risk on Decision Tree Classification.- Multi-objective Learning Classifier Systems.- Multi-Objective Learning for Interpretability Improvement.- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers.- GA-Based Pareto Optimization for Rule Extraction from Neural Networks.- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems.- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction.- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model.- Multi-Objective Ensemble Generation.- Pareto-Optimal Approaches to Neuro-Ensemble Learning.- Trade-Off Between Diversity and Accuracy in Ensemble Generation.- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks.- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification.- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection.- Applications of Multi-Objective Machine Learning.- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis.- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination.- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle.- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments.- Multi-Objective Neural Network Optimization for Visual Object Detection.
Caracteristici
Selected collection of recent research on multi-objective approach to machine learning Recent developments in evolutionary multi-objective optimization Applies the concept of Pareto-optimality to machine learning