Modern Analysis and Topology: Universitext
Autor Norman R. Howesen Limba Engleză Paperback – 23 iun 1995
Din seria Universitext
- 15%
Preț: 390.04 lei -
Preț: 454.23 lei - 15%
Preț: 532.05 lei - 19%
Preț: 426.15 lei - 17%
Preț: 391.44 lei - 15%
Preț: 522.85 lei - 19%
Preț: 506.43 lei -
Preț: 470.62 lei -
Preț: 442.01 lei -
Preț: 399.23 lei - 17%
Preț: 462.80 lei - 15%
Preț: 487.81 lei - 15%
Preț: 391.81 lei -
Preț: 385.01 lei - 15%
Preț: 390.95 lei -
Preț: 349.10 lei -
Preț: 409.96 lei - 15%
Preț: 392.21 lei - 15%
Preț: 426.68 lei - 15%
Preț: 390.04 lei - 15%
Preț: 465.98 lei -
Preț: 469.31 lei - 15%
Preț: 425.22 lei - 15%
Preț: 460.67 lei -
Preț: 389.61 lei -
Preț: 335.93 lei -
Preț: 417.96 lei - 19%
Preț: 451.23 lei - 15%
Preț: 397.08 lei - 15%
Preț: 572.89 lei -
Preț: 367.85 lei - 15%
Preț: 456.60 lei - 15%
Preț: 513.20 lei - 15%
Preț: 476.97 lei -
Preț: 374.91 lei -
Preț: 465.60 lei - 15%
Preț: 618.64 lei - 20%
Preț: 490.60 lei - 15%
Preț: 579.03 lei - 15%
Preț: 565.69 lei -
Preț: 471.15 lei -
Preț: 367.12 lei -
Preț: 475.01 lei -
Preț: 443.31 lei - 20%
Preț: 319.60 lei - 15%
Preț: 483.60 lei - 15%
Preț: 455.18 lei - 15%
Preț: 576.22 lei - 15%
Preț: 560.81 lei
Preț: 382.49 lei
Puncte Express: 574
Preț estimativ în valută:
67.69€ • 79.11$ • 58.77£
67.69€ • 79.11$ • 58.77£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387979861
ISBN-10: 0387979867
Pagini: 444
Ilustrații: XXVIII, 444 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387979867
Pagini: 444
Ilustrații: XXVIII, 444 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.64 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1: Metric Spaces.- 1.1 Metric and Pseudo-Metric Spaces.- 1.2 Stone’s Theorem.- 1.3 The Metrization Problem.- 1.4 Topology of Metric Spaces.- 1.5 Uniform Continuity and Uniform Convergence.- 1.6 Completeness.- 1.7 Completions.- 2: Uniformities.- 2.1 Covering Uniformities.- 2.2 Uniform Continuity.- 2.3 Uniformizability and Complete Regularity.- 2.4 Normal Coverings.- 3: Transfinite Sequences.- 3.1 Background.- 3.2 Transfinite Sequences in Uniform Spaces.- 3.3 Transfinite Sequences and Topologies.- 4: Completeness, Cofinal Completeness And Uniform Paracompactness.- 4.1 Introduction.- 4.2 Nets.- 4.3 Completeness, Cofinal Completeness and Uniform Paracompactness.- 4.4 The Completion of a Uniform Space.- 4.5 The Cofinal Completion or Uniform Paracompactification.- 5: Fundamental Constructions.- 5.1 Introduction.- 5.2 Limit Uniformities.- 5.3 Subspaces, Sums, Products and Quotients.- 5.4 Hyperspaces.- 5.5 Inverse Limits and Spectra.- 5.6 The Locally Fine Coreflection.- 5.7 Categories and Functors.- 6: Paracompactifications.- 6.1 Introduction.- 6.2 Compactifications.- 6.3 Tamano’s Completeness Theorem.- 6.4 Points at Infinity and Tamano’s Theorem.- 6.5 Paracompactifications.- 6.6 The Spectrum of ?X.- 6.7 The Tamano-Morita Paracompactification.- 7: Realcompactifications.- 7.1 Introduction.- 7.2 Realcompact Spaces.- 7.3 Realcompactifications.- 7.4 Realcompact Spaces and Lindelöf Spaces.- 7.5 Shirota’s Theorem.- 8: Measure And Integration.- 8.1 Introduction.- 8.2 Measure Rings and Algebras.- 8.3 Properties of Measures.- 8.4 Outer Measures.- 8.5 Measurable Functions.- 8.6 The Lebesgue Integral.- 8.7 Negligible Sets.- 8.8 Linear Functional and Integrals.- 9: Haar Measure In Uniform Spaces.- 9.1 Introduction.- 9.2 Haar Integrals and Measures.- 9.3 Topological Groups andUniqueness of Haar Measures.- 10: Uniform Measures.- 10.1 Introduction.- 10.2 Prerings and Loomis Contents.- 10.3 The Haar Functions.- 10.4 Invariance and Uniqueness of Loomis Contents and Haar Measures.- 10.5 Local Compactness and Uniform Measures.- 11: Spaces Of Functions.- 11.1 LP -spaces.- 11.2 The Space L2(?) and Hilbert Spaces.- 11.3 The Space LP(?) and Banach Spaces.- 11.4 Uniform Function Spaces.- 12: Uniform Differentiation.- 12.1 Complex Measures.- 12.2 The Radon-Nikodym Derivative.- 12.3 Decompositions of Measures and Complex Integration.- 12.4 The Riesz Representation Theorem.- 12.5 Uniform Derivatives of Measures.