Methods for the Localization of Singularities in Numerical Solutions of Gas Dynamics Problems: Scientific Computation
Autor E.V. Vorozhtsov, N. N. Yanenkoen Limba Engleză Paperback – 19 sep 2011
Din seria Scientific Computation
- 18%
Preț: 855.21 lei - 18%
Preț: 714.52 lei - 18%
Preț: 981.37 lei -
Preț: 385.79 lei -
Preț: 385.64 lei - 20%
Preț: 976.25 lei -
Preț: 371.93 lei - 15%
Preț: 629.35 lei - 18%
Preț: 1065.40 lei -
Preț: 373.24 lei -
Preț: 374.54 lei - 18%
Preț: 913.16 lei - 15%
Preț: 624.14 lei - 18%
Preț: 809.09 lei - 18%
Preț: 906.03 lei - 15%
Preț: 485.76 lei - 15%
Preț: 627.79 lei -
Preț: 374.91 lei -
Preț: 365.82 lei - 18%
Preț: 920.28 lei - 18%
Preț: 1068.14 lei -
Preț: 435.38 lei - 15%
Preț: 624.33 lei -
Preț: 373.40 lei - 18%
Preț: 921.17 lei - 18%
Preț: 1085.59 lei - 18%
Preț: 930.00 lei - 15%
Preț: 673.68 lei - 15%
Preț: 574.94 lei -
Preț: 371.00 lei -
Preț: 379.89 lei -
Preț: 370.46 lei - 18%
Preț: 1063.59 lei - 15%
Preț: 484.80 lei - 15%
Preț: 628.73 lei - 15%
Preț: 619.12 lei - 15%
Preț: 573.38 lei
Preț: 380.24 lei
Nou
Puncte Express: 570
Preț estimativ în valută:
67.30€ • 78.92$ • 59.00£
67.30€ • 78.92$ • 59.00£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642647703
ISBN-10: 3642647707
Pagini: 420
Ilustrații: X, 406 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642647707
Pagini: 420
Ilustrații: X, 406 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction and Necessary Notions from the Theory of Difference Schemes for Gas Dynamics Problems.- 1.1. Original Equations. Jump Conditions in the Case of One-Dimensional Gas Flow.- 1.2. Jump Conditions in the Case of Two-Dimensional Gas Flow.- 1.3. Homogeneous Difference Schemes and Their Differential Approximations.- 1.4. On the Applicability of Progressive Wave-Type Solutions of the First Differential Approximation Equations.- 2. Differential Analyzers of Shock Waves in One-Dimensional Gas Flows.- 2.1. An Introductory Example.- 2.2. Existence and Uniqueness of the Smeared Wave Center in the Solution of the System with Artificial Viscosity.- 2.3. Scheme Viscosity and Smeared Shock Wave Center Existence.- 2.4. An Analysis of Difference Schemes of Gas Dynamics.- 2.5. The Application of Differential Analyzers in Problems of Shock Wave Formation.- 3. Differential Analyzers of Shock Waves in Two-Dimensional Gas Dynamic Computations.- 3.1. Method for Investigating the Properties of Curvilinear Shock Front “Smearing”.- 3.2. Localization of the Smeared Shock Wave Center in the Case of a Straight Front.- 3.3. Shock Localization by Moving Grids.- 3.4. Computational Examples.- 4. Differential Analyzers of Contact Discontinuities in One-Dimensional Gas Flows.- 4.1. Methods for the Localization of Contact Discontinuities in the Presence of K-Consistence.- 4.2. K-Consistence Property of the First Differential Approximation in the Two-Dimensional Case.- 4.3. Methods of K-Inconsistence Suppression.- 4.4. The Contact Residual Subtraction Method.- 4.5. Computational Examples.- 5. Optimization Techniques of the Discontinuities Localization.- 5.1. An Analysis of the Miranker—Pironneau Method.- 5.2. Incorporation of the Information on Approximation Viscosity into the BasicFunctional.- 5.3. Shock Localization on the Basis of Function Minimization.- 5.4. Gradient Methods of Basic Functional Minimization.- 5.5. Computational Examples.- 5.6. On Optimization Algorithms for the Localization of Contact Discontinuities.- 5.7. An Optimization Method for the Localization of Weak Discontinuities.- 5.8. A Generalization of the Miranker—Pironneau Method for the Case of Polar Coordinates in a Filtration Problem.- 6. Difference Solution Refinement in the Neighborhood of Strong Discontinuities.- 6.1. Construction of the Basic Functional.- 6.2. Solution Refinement on the Basis of the Least-Squares Method.- 6.3. On the Difference Solution Refinement in the Neighborhood of a Shock Wave Front.- 6.4. Computational Examples.- 7. Classification of Singularities in Gas Flows as the Pattern Recognition Problem.- 7.1. Methodologies of Pattern Recognition.- 7.2. Image Formation.- 7.3. Image Segmentation.- 7.4. Feature Space.- 7.5. Algorithms of Pattern Classification.- 7.6. Examples of Pattern Classification in the Numerical Solutions of Two-Dimensional Gas Dynamics Problems.- Concluding Remarks.- References.