Cantitate/Preț
Produs

Mathematics in Industrial Problems: Part 1: The IMA Volumes in Mathematics and its Applications, cartea 16

Autor Avner Friedman
en Limba Engleză Paperback – 24 apr 2012
Building a bridge between mathematicians and industry is both a chal­ lenging task and a valuable goal for the Institute for Mathematics and its Applications (IMA). The rationale for the existence of the IMA is to en­ courage interaction between mathematicians and scientists who use math­ ematics. Some of this interaction should evolve around industrial problems which mathematicians may be able to solve in "real time." Both Industry and Mathematics benefit: Industry, by increase of mathematical knowledge and ideas brought to bear upon their concerns, and Mathematics, through the infusion of exciting new problems. In the past ten months I have visited numerous industries and national laboratories, and met with several hundred scientists to discuss mathe­ matical questions which arise in specific industrial problems. Many of the problems have special features which existing mathematical theories do not encompass; such problems may open new directions for research. However, I have encountered a substantial number of problems to which mathemati­ cians should be able to contribute by providing either rigorous proofs or formal arguments. The majority of scientists with whom I met were engineers, physicists, chemists, applied mathematicians and computer scientists. I have found them eager to share their problems with the mathematical community. Often their only recourse with a problem is to "put it on the computer." However, further insight could be gained by mathematical analysis.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (10) 36749 lei  6-8 săpt.
  Springer – 24 apr 2012 36749 lei  6-8 săpt.
  Springer – 18 oct 2011 37157 lei  6-8 săpt.
  Springer – 9 mai 2012 61112 lei  6-8 săpt.
  Springer – 21 oct 2011 61127 lei  6-8 săpt.
  Springer – 6 oct 2012 61127 lei  6-8 săpt.
  Springer – 17 oct 2012 61127 lei  6-8 săpt.
  Springer – 6 dec 2010 61255 lei  6-8 săpt.
  Springer – 18 oct 2011 66772 lei  6-8 săpt.
  Springer – 14 oct 2011 67139 lei  6-8 săpt.
  Springer – 2 mai 2012 67237 lei  6-8 săpt.
Hardback (3) 61725 lei  6-8 săpt.
  Springer – 12 iun 1998 61725 lei  6-8 săpt.
  Springer – 25 oct 1996 61725 lei  6-8 săpt.
  Springer – 24 ian 1997 61883 lei  6-8 săpt.

Din seria The IMA Volumes in Mathematics and its Applications

Preț: 36749 lei

Nou

Puncte Express: 551

Preț estimativ în valută:
6505 7574$ 5681£

Carte tipărită la comandă

Livrare economică 21 ianuarie-04 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461574019
ISBN-10: 1461574013
Pagini: 188
Ilustrații: X, 174 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.27 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria The IMA Volumes in Mathematics and its Applications

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Scattering by Stripe Grating.- 1.1 The Physical Problem.- 1.2 Relation to the Time-dependent Problem.- 1.3 Form of Solutions for |z| > d.- 1.4 Form of Solutions Inside the Slab.- 1.5 Boundary Matching of Solutions.- 1.6 Remarks and References.- 1.7 Mathematical Issues.- 1.8 Partial Solution to Problem (3).- 2 Packing Problems in Data Communications.- 2.1 Motivation and Problem Statement.- 2.2 p = q = ?.- 2.3 The Case p = q = 2.- 2.4 Solution to the Spread Problem.- 2.5 References.- 3 Unresolved Mathematical Issues in Coating Flow Mechanics.- 3.1 Curtain Coating..- 3.2 Known Mathematical Results.- 3.3 Simplified Models.- 3.4 Future Directions.- 3.5 References.- 4 Conservation Laws in Crystal Precipitation.- 4.1 Particles in Photographic Emulsions.- 4.2 A Simple Model of Tavare.- 4.3 A More Realistic Model.- 4.4 Solution to Problems (1), (2).- 5 A Close Encounter Problem of Random Walk in Polymer Physics.- 6 Mathematical Models for Manufacturable Josephson Junction Circuitry.- 7 Image Reconstruction in Oil Refinery.- 7.1 The Problem.- 7.2 Suggested Method.- 8 Asymptotic Methods in Semiconductor Device Modeling.- 8.1 The MOSFET.- 8.2 The PNPN Problem.- 8.3 Solution of Problem 1.- 8.4 References.- 9 Some Fluid Mechanics Problems in U.K. Industry.- 9.1 Interior Flows in Cooled Turbine Blades.- 9.2 Fiber Optic Tapering.- 9.3 Ship Slamming.- 9.4 References.- 10 High Resolution Sonar Waveform Synthesis.- 10.1 References.- 11 Synergy in Parallel Algorithms.- 11.1 General framework.- 11.2 Gauss-Seidel.- 11.3 The Heat Equation.- 11.4 Open Questions.- 11.5 References.- 12 A Conservation Law Model for Ion Etching for Semiconductor Fabrication.- 12.1 Etching of a Material Surface.- 12.2 Etching in Semiconductor Device Fabrication.- 12.3 Open Problems.- 12.4 References.- 13 PhaseChange Problems with Void.- 13.1 The Problem.- 13.2 The Void Problem in 1-Dimension.- 13.3 A Scheme to Solve the Void Problem.- 13.4 References.- 14 Combinatorial Problems Arising in Network Optimization.- 14.1 General Concepts.- 14.2 Diameter Estimation.- 14.3 Reducing the Diameter.- 14.4 Expander Graphs.- 14.5 Reliability.- 14.6 References.- 15 Dynamic Inversion and Control of Nonlinear Systems.- 15.1 Linear Systems.- 15.2 Nonlinear Systems.- 15.3 References.- 16 The Stability of Rapid Stretching Plastic Jets.- 16.1 Introduction.- 16.2 The Free Boundary Problem.- 16.3 Stability Analysis.- 16.4 Open Problems.- 16.5 References.- 17 A Selection of Applied Mathematics Problems.- 17.1 Path Generation for Robot Cart.- 17.2 Semiconductor Problems.- 17.3 Queuing Networks.- 17.4 References.- 18 The Mathematical Treatment of Cavitation in Elastohydro-dynamic Lubrication.- 18.1 The Model.- 18.2 Roller Bearing.- 18.3 Open Problems.- 18.4 Partial Solutions.- 18.5 References.- 19 Some Problems Associated with Secure Information Flows in Computer Systems.- 19.1 Threats and Methods of Response.- 19.2 More General Policies.- 19.3 References.- 20 The Smallest Scale for Incompressible Navier-Stokes Equations.- 20.1 References.- 21 Fundamental Limits to Digital Syncronization.- 21.1 The Barker Code.- 21.2 Complex Barker Sequences.- 21.3 References.- 22 Applications and Modeling of Diffractive Optics.- 22.1 Introduction to Diffractive Optics.- 22.2 Practical Applications.- 22.3 Mathematical Modeling.- 22.4 References.