Mathematical Theory of Nonequilibrium Steady States
Autor Da-Quan Jiang, Min Qian, Ming-Ping Qianen Limba Engleză Paperback – 8 dec 2003
Preț: 374.84 lei
Nou
Puncte Express: 562
Preț estimativ în valută:
66.35€ • 77.26$ • 57.95£
66.35€ • 77.26$ • 57.95£
Carte tipărită la comandă
Livrare economică 21 ianuarie-04 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540206118
ISBN-10: 3540206116
Pagini: 296
Ilustrații: X, 286 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540206116
Pagini: 296
Ilustrații: X, 286 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.45 kg
Ediția:2004
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Preface.- Introduction.- Circulation Distribution, Entropy Production and Irreversibility of Denumerable Markov Chains.- Circulation Distribution, Entropy Production and Irreversibility of Finite Markov Chains with Continuous Parameter.- General Minimal Diffusion Process: its Construction, Invariant Measure, Entropy Production and Irreversibility.- Measure-theoretic Discussion on Entropy Production of Diffusion Processes and Fluctuation-dissipation Theorem.- Entropy Production, Rotation Numbers and Irreversibility of Diffusion Processes on Manifolds.- On a System of Hyperstable Frequency Locking Persistence under White Noise.- Entropy Production and Information Gain in Axiom A Systems.- Lyapunov Exponents of Hyperbolic Attractors.- Entropy Production, Information Gain and Lyapunov Exponents of Random Hyperbolic Dynamical Systems.- References.- Index.
Textul de pe ultima copertă
This volume provides a systematic mathematical exposition of the conceptual problems of nonequilibrium statistical physics, such as entropy production, irreversibility, and ordered phenomena. Markov chains, diffusion processes, and hyperbolic dynamical systems are used as mathematical models of physical systems. A measure-theoretic definition of entropy production rate and its formulae in various cases are given. It vanishes if and only if the stationary system is reversible and in equilibrium. Moreover, in the cases of Markov chains and diffusion processes on manifolds, it can be expressed in terms of circulations on directed cycles. Regarding entropy production fluctuations, the Gallavotti-Cohen fluctuation theorem is rigorously proved.