Machine Learning for Medical Image Reconstruction: Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings: Lecture Notes in Computer Science, cartea 11905
Editat de Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Yeen Limba Engleză Paperback – 24 oct 2019
The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.
Din seria Lecture Notes in Computer Science
- 20%
Preț: 400.77 lei - 20%
Preț: 754.11 lei - 20%
Preț: 324.19 lei - 20%
Preț: 373.80 lei - 20%
Preț: 342.61 lei - 20%
Preț: 403.00 lei - 20%
Preț: 573.45 lei -
Preț: 395.25 lei - 20%
Preț: 487.46 lei - 20%
Preț: 355.27 lei - 20%
Preț: 731.97 lei - 20%
Preț: 293.24 lei - 20%
Preț: 669.21 lei - 20%
Preț: 984.64 lei - 20%
Preț: 620.33 lei - 20%
Preț: 336.86 lei - 20%
Preț: 330.54 lei - 20%
Preț: 313.87 lei - 20%
Preț: 679.09 lei - 20%
Preț: 373.16 lei - 20%
Preț: 782.57 lei - 20%
Preț: 434.17 lei - 20%
Preț: 489.11 lei - 20%
Preț: 904.16 lei - 20%
Preț: 375.72 lei - 20%
Preț: 400.17 lei - 20%
Preț: 432.78 lei - 20%
Preț: 631.96 lei - 20%
Preț: 432.11 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 556.96 lei - 20%
Preț: 488.90 lei - 20%
Preț: 560.93 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 328.94 lei - 20%
Preț: 629.71 lei - 20%
Preț: 568.70 lei - 20%
Preț: 447.31 lei - 20%
Preț: 733.68 lei - 20%
Preț: 315.26 lei - 20%
Preț: 315.62 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 850.42 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 519.32 lei
Preț: 318.97 lei
Preț vechi: 398.71 lei
-20%
Puncte Express: 478
Preț estimativ în valută:
56.42€ • 66.15$ • 49.09£
56.42€ • 66.15$ • 49.09£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030338428
ISBN-10: 3030338428
Pagini: 266
Ilustrații: IX, 266 p. 128 illus., 94 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.4 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030338428
Pagini: 266
Ilustrații: IX, 266 p. 128 illus., 94 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.4 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Deep Learning for Magnetic Resonance Imaging.- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging.- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network.- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network.- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network.- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator.- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions.- Modeling and Analysis Brain Development via Discriminative Dictionary Learning.- Deep Learning for Computed Tomography.- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval.- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior.- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks.- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results.- Deep Learning for General Image Reconstruction.- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps.- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation.- Stain Style Transfer using Transitive Adversarial Networks.- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer.- Deep Learning based approach to quantification of PET tracer uptake in small tumors.- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction.- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data.- Neural Denoising of Ultra-Low Dose Mammography.- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging.- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy.- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis.- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction.