Cantitate/Preț
Produs

Machine Learning for Evolution Strategies (Studies in Big Data, nr. 20)

De (autor)
Notă GoodReads:
en Limba Engleză Hardback – 06 Jun 2016
This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch.
Citește tot Restrânge
Toate formatele și edițiile
Toate formatele și edițiile Preț Express
Paperback (1) 64813 lei  7-9 săpt. +25289 lei  13-21 zile
  Springer International Publishing – 30 May 2018 64813 lei  7-9 săpt. +25289 lei  13-21 zile
Hardback (1) 78691 lei  7-9 săpt. +21234 lei  13-21 zile
  Springer International Publishing – 06 Jun 2016 78691 lei  7-9 săpt. +21234 lei  13-21 zile

Din seria Studies in Big Data

Preț: 78691 lei

Preț vechi: 84614 lei
-7%

Puncte Express: 1180

Preț estimativ în valută:
15146 16385$ 13334£

Carte tipărită la comandă

Livrare economică 17-31 mai
Livrare express 11-19 aprilie pentru 22233 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319333816
ISBN-10: 331933381X
Pagini: 110
Ilustrații: IX, 124 p. 38 illus. in color.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 3.32 kg
Ediția: 1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data

Locul publicării: Cham, Switzerland

Cuprins

Part I Evolution Strategies.- Part II Machine Learning.- Part III Supervised Learning.

Textul de pe ultima copertă

This bookintroduces numerous algorithmic hybridizations between both worlds that showhow machine learning can improve and support evolution strategies. The set ofmethods comprises covariance matrix estimation, meta-modeling of fitness andconstraint functions, dimensionality reduction for search and visualization ofhigh-dimensional optimization processes, and clustering-based niching. Aftergiving an introduction to evolution strategies and machine learning, the bookbuilds the bridge between both worlds with an algorithmic and experimentalperspective. Experiments mostly employ a (1+1)-ES and are implemented in Pythonusing the machine learning library scikit-learn. The examples are conducted ontypical benchmark problems illustrating algorithmic concepts and theirexperimental behavior. The book closes with a discussion of related lines ofresearch.

Caracteristici

State of the art presentation of Machine Learning in Evolution Strategies
Condensed presentation
Short introduction and recent research
Includes supplementary material: sn.pub/extras