Machine Learning - EWSL-91: European Working Session on Learning, Porto, Portugal, March 6-8, 1991. Proceedings: Lecture Notes in Computer Science, cartea 482
Editat de Yves Kodratoffen Limba Engleză Paperback – 20 feb 1991
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei -
Preț: 395.25 lei - 20%
Preț: 327.36 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 328.94 lei - 20%
Preț: 340.04 lei - 20%
Preț: 487.46 lei - 20%
Preț: 629.71 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 782.57 lei - 20%
Preț: 679.09 lei - 20%
Preț: 330.54 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 435.28 lei - 20%
Preț: 375.72 lei - 20%
Preț: 342.61 lei - 20%
Preț: 432.78 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 373.80 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 793.92 lei - 20%
Preț: 324.19 lei - 20%
Preț: 733.68 lei - 20%
Preț: 336.86 lei - 20%
Preț: 327.36 lei - 20%
Preț: 573.45 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 560.93 lei - 20%
Preț: 560.93 lei - 20%
Preț: 631.96 lei - 20%
Preț: 568.70 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 371.78 lei
Preț vechi: 464.73 lei
-20%
Puncte Express: 558
Preț estimativ în valută:
65.77€ • 77.55$ • 57.13£
65.77€ • 77.55$ • 57.13£
Carte tipărită la comandă
Livrare economică 19-25 martie
Specificații
ISBN-13: 9783540538165
ISBN-10: 354053816X
Pagini: 556
Ilustrații: XI, 541 p.
Dimensiuni: 170 x 242 x 29 mm
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354053816X
Pagini: 556
Ilustrații: XI, 541 p.
Dimensiuni: 170 x 242 x 29 mm
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Abstracting background knowledge for concept learning.- A multistrategy learning approach to domain modeling and knowledge acquisition.- Using plausible explanations to bias empirical generalization in weak theory domains.- The replication problem: A constructive induction approach.- Integrating an explanation-based learning mechanism into a general problem-solver.- Analytical negative generalization and empirical negative generalization are not cumulative: A case study.- Evaluating and changing representation in concept acquisition.- Application of empirical discovery in knowledge acquisition.- Using accuracy in scientific discovery.- KBG : A generator of knowledge bases.- On estimating probabilities in tree pruning.- Rule induction with CN2: Some recent improvements.- On changing continuous attributes into ordered discrete attributes.- A method for inductive cost optimization.- When does overfitting decrease prediction accuracy in induced decision trees and rule sets?.- Semi-naive bayesian classifier.- Description contrasting in incremental concept formation.- System FLORA: Learning from time-varying training sets.- Message-based bucket brigade: An algorithm for the apportionment of credit problem.- Acquiring object-knowledge for learning systems.- Learning nonrecursive definitions of relations with linus.- Extending explanation-based generalization by abstraction operators.- Static learning for an adaptative theorem prover.- Explanation-based generalization and constraint propagation with interval labels.- Learning by explanation of failures.- PANEL : Logic and learnability.- Panel on : Causality and learning.- Seed space and version space: Generalizing from approximations.- Integrating EBL with automatic text analysis.- Abduction for explanation-based learning.- Consistent term mappings, term partitions, and inverse resolution.- Learning by analogical replay in prodigy: First results.- Analogical reasoning for logic programming.- Case-based learning of strategicknowledge.- Learning in distributed systems and multi-agent environments.- Learning to relate terms in a multiple agent environment.- Extending learning to multiple agents: Issues and a model for multi-agent machine learning (MA-ML).- Applications of machine learning: Notes from the panel members.- Evaluation of learning systems : An artificial data-based approach.- Shift of bias in learning from drug compounds: The fleming project.- Learning features by experimentation in chess.- Representation and induction of musical structures for computer assisted composition.- IPSA: Inductive protein structure analysis.- Four stances on knowledge acquisition and machine learning.- Programme of EWSL-91.