Linear Algebra: Graduate Texts in Mathematics, cartea 23
Autor Werner H. Greuben Limba Engleză Hardback – 30 iun 1975
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 515.37 lei 6-8 săpt. | |
| Springer – 4 iul 2012 | 515.37 lei 6-8 săpt. | |
| Hardback (1) | 629.48 lei 6-8 săpt. | |
| Springer – 30 iun 1975 | 629.48 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei - 15%
Preț: 466.31 lei -
Preț: 380.44 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.06 lei - 15%
Preț: 391.74 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei - 15%
Preț: 393.25 lei - 17%
Preț: 396.35 lei - 15%
Preț: 569.57 lei - 15%
Preț: 569.62 lei -
Preț: 445.45 lei -
Preț: 416.98 lei - 15%
Preț: 576.36 lei - 15%
Preț: 485.89 lei -
Preț: 449.96 lei -
Preț: 391.02 lei -
Preț: 542.93 lei -
Preț: 260.78 lei -
Preț: 432.82 lei - 19%
Preț: 481.23 lei - 15%
Preț: 388.38 lei - 15%
Preț: 571.96 lei - 15%
Preț: 559.25 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 477.42 lei -
Preț: 418.37 lei -
Preț: 374.48 lei -
Preț: 443.69 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei - 15%
Preț: 576.84 lei -
Preț: 373.03 lei
Preț: 629.48 lei
Preț vechi: 740.57 lei
-15%
Puncte Express: 944
Preț estimativ în valută:
111.35€ • 130.54$ • 96.87£
111.35€ • 130.54$ • 96.87£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387901107
ISBN-10: 0387901108
Pagini: 452
Ilustrații: XVIII, 452 p.
Dimensiuni: 156 x 234 x 28 mm
Greutate: 0.82 kg
Ediția:4th ed. 1975
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 0387901108
Pagini: 452
Ilustrații: XVIII, 452 p.
Dimensiuni: 156 x 234 x 28 mm
Greutate: 0.82 kg
Ediția:4th ed. 1975
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
0. Prerequisites.- I. Vector spaces.- § 1. Vector spaces.- § 2. Linear mappings.- § 3. Subspaces and factor spaces.- § 4. Dimension.- § 5. The topology of a real finite dimensional vector space.- II. Linear mappings.- § 1. Basic properties.- § 2. Operations with linear mappings.- § 3. Linear isomorphisms.- § 4. Direct sum of vector spaces.- § 5. Dual vector spaces.- § 6. Finite dimensional vector spaces.- III. Matrices.- § 1. Matrices and systems of linear equations.- § 2. Multiplication of matrices.- § 3. Basis transformation.- § 4. Elementary transformations.- IV. Determinants.- § 1. Determinant functions.- § 2. The determinant of a linear transformation.- § 3. The determinant of a matrix.- § 4. Dual determinant functions.- § 5. The adjoint matrix.- § 6. The characteristic polynomial.- § 7. The trace.- § 8. Oriented vector spaces.- V. Algebras.- § 1. Basic properties.- § 2. Ideals.- § 3. Change of coefficient field of a vector space.- VI. Gradations and homology.- § 1. G-graded vector spaces.- § 2. G-graded algebras.- § 3. Differential spaces and differential algebras.- VII. Inner product spaces.- § 1. The inner product.- § 2. Orthonormal bases.- § 3. Normed determinant functions.- § 4. Duality in an inner product space.- § 5. Normed vector spaces.- § 6. The algebra of quaternions.- VIII. Linear mappings of inner product spaces.- § 1. The adjoint mapping.- § 2. Selfadjoint mappings.- § 3. Orthogonal projections.- § 4. Skew mappings.- § 5. Isometric mappings.- § 6. Rotations of Euclidean spaces of dimension 2, 3 and 4.- § 7. Differentiate families of linear automorphisms.- IX. Symmetric bilinear functions.- § 1. Bilinear and quadratic functions.- § 2. The decomposition of E.- § 3. Pairs of symmetric bilinear functions.- §4. Pseudo-Euclidean spaces.- § 5. Linear mappings of Pseudo-Euclidean spaces.- X. Quadrics.- § 1. Affine spaces.- § 2. Quadrics in the affine space.- § 3. Affine equivalence of quadrics.- § 4. Quadrics in the Euclidean space.- XI. Unitary spaces.- § 1. Hermitian functions.- § 2. Unitary spaces.- § 3. Linear mappings of unitary spaces.- § 4. Unitary mappings of the complex plane.- § 5. Application to Lorentz-transformations.- XII. Polynomial algebra.- § 1. Basic properties.- § 2. Ideals and divisibility.- § 3. Factor algebras.- § 4. The structure of factor algebras.- XIII. Theory of a linear transformation.- § 1. Polynomials in a linear transformation.- § 2. Generalized eigenspaces.- § 3. Cyclic spaces.- § 4. Irreducible spaces.- § 5. Application of cyclic spaces.- § 6. Nilpotent and semisimple transformations.- § 7. Applications to inner product spaces.