Cantitate/Preț
Produs

Homological Algebra: Encyclopaedia of Mathematical Sciences, cartea 38

Autor S.I. Gelfand Editat de A.I. Kostrikin Autor Yu I. Manin Editat de I.R. Shafarevich
en Limba Engleză Paperback – 20 mai 1999
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61349 lei  43-57 zile
  Springer Berlin, Heidelberg – 20 mai 1999 61349 lei  43-57 zile
Hardback (1) 61883 lei  43-57 zile
  Springer Berlin, Heidelberg – 29 mar 1994 61883 lei  43-57 zile

Din seria Encyclopaedia of Mathematical Sciences

Preț: 61349 lei

Preț vechi: 72174 lei
-15%

Puncte Express: 920

Preț estimativ în valută:
10861 12647$ 9435£

Carte tipărită la comandă

Livrare economică 23 februarie-09 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540653783
ISBN-10: 3540653783
Pagini: 236
Ilustrații: V, 222 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Encyclopaedia of Mathematical Sciences

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Complexes and Cohomology.- 2. The Language of Categories.- 3. Homology Groups in Algebra and in Geometry.- 4. Derived Categories and Derived Functors.- 5. Triangulated Categories.- 6. Mixed Hodge Structures.- 7. Perverse Sheaves.- 8. D-Modules.- References.- Author Index.

Caracteristici

Homological algebra is an important tool in algebraic geometry and algebraic topology The book presents a modern approach to this subject taking into account applications in both these fields Includes supplementary material: sn.pub/extras