Head and Neck Tumor Segmentation and Outcome Prediction: Lecture Notes in Computer Science
Editat de Vincent Andrearczyk, Valentin Oreiller, Mathieu Hatt, Adrien Depeursingeen Limba Engleză Paperback – 13 mar 2022
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 390.35 lei 3-5 săpt. | +21.30 lei 7-13 zile |
| Springer – 19 mar 2023 | 390.35 lei 3-5 săpt. | +21.30 lei 7-13 zile |
| Springer – 13 mar 2022 | 487.29 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 487.29 lei
Preț vechi: 609.11 lei
-20% Nou
Puncte Express: 731
Preț estimativ în valută:
86.23€ • 101.11$ • 75.73£
86.23€ • 101.11$ • 75.73£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030982522
ISBN-10: 3030982521
Pagini: 340
Ilustrații: X, 328 p. 102 illus., 88 illus. in color.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.52 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3030982521
Pagini: 340
Ilustrații: X, 328 p. 102 illus., 88 illus. in color.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.52 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Overview of the HECKTOR Challenge at MICCAI 2021: Automatic.- Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images.- CCUT-Net: Pixel-wise Global Context Channel Attention UT-Net for head and neck tumor segmentation.- A Coarse-to-Fine Framework for Head and Neck Tumor Segmentation in CT and PET Images.- Automatic Segmentation of Head and Neck (H&N) Primary Tumors in PET and CT images using 3D-Inception-ResNet Model.- The Head and Neck Tumor Segmentation in PET/CT Based on Multi-channel Attention Network.- Multimodal Spatial Attention Network for Automatic Head and Neck Tumor Segmentation in FDG-PET and CT Images.- PET Normalizations to Improve Deep Learning Auto-Segmentation of Head and Neck Tumors in 3D PET/CT.- The Head and Neck Tumor Segmentation based on 3D U-Net: 3D U-net applied to Simple Attention Module for Head and Neck tumor segmentation in PET and CT images.- Skip-SCSE Multi-Scale Attention and Co-Learning method for Oropharyngeal Tumor Segmentation on multi-modal PET-CT images.- Head and Neck Cancer Primary Tumor Auto Segmentation using Model Ensembling of Deep Learning in PET/CT Images.- Priori and Posteriori Attention for Generalizing Head and Neck Tumors Segmentation.- Head and Neck Tumor Segmentation with Deeply-Supervised 3D UNet and Progression-Free Survival Prediction with Linear Model.- Deep learning based GTV delineation and progression free survival risk score prediction for head and neck cancer patients.- Multi-task Deep Learning for Joint Tumor Segmentation and Outcome Prediction in Head and Neck Cancer.- PET/CT Head and Neck tumor segmentation and Progression Free Survival prediction using Deep and Machine learning techniques.- Automatic Head and Neck Tumor Segmentation and Progression Free Survival Analysis on PET/CT images.- Multimodal PET/CT Tumour Segmentation and Progression-Free Survival Prediction using a Full-scale UNet with Attention.- Advanced Automatic Segmentation of Tumors and Survival Prediction in Head and Neck Cancer.- Fusion-Based head and neck Tumor Segmentation and Survival prediction using Robust Deep Learning Techniques and Advanced Hybrid Machine Learning Systems.- Head and Neck Primary Tumor Segmentation using Deep Neural Networks and Adaptive Ensembling.- Segmentation and Risk Score Prediction of Head and Neck Cancers in PET/CT Volumes with 3D U-Net and Cox Proportional Hazard Neural Networks.- Dual-Path Connected CNN for Tumor Segmentation of Combined PET-CT Images and Application to Survival Risk Prediction.- Deep Supervoxel Segmentation Survival Anaylsis in Head and Neck Cancer Patients.- A Hybrid Radiomics Approach to Modeling Progression-free Survival in Head and Neck Cancers.- An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using Multimodal Data.- Progression Free Survival Prediction for Head and Neck Cancer using Deep Learning based on Clinical and PET/CT Imaging Data.- Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma.- Self-supervised multi-modality image feature extraction for the progression free survival prediction in head and neck cancer.- Comparing deep learning and conventional machine learning for outcome prediction of head and neck cancer in PET/CT.