Handwriting Recognition: Soft Computing and Probabilistic Approaches: Studies in Fuzziness and Soft Computing, cartea 133
Autor Zhi-Qiang Liu, Jin-Hai Cai, Richard Buseen Limba Engleză Paperback – 7 dec 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 618.33 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 7 dec 2010 | 618.33 lei 6-8 săpt. | |
| Hardback (1) | 624.51 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 21 iul 2003 | 624.51 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20%
Preț: 961.00 lei - 20%
Preț: 627.83 lei - 20%
Preț: 949.14 lei - 20%
Preț: 1010.14 lei - 20%
Preț: 1008.57 lei - 20%
Preț: 1113.52 lei - 20%
Preț: 617.49 lei - 20%
Preț: 962.94 lei - 18%
Preț: 917.09 lei - 20%
Preț: 317.55 lei - 20%
Preț: 320.37 lei - 20%
Preț: 958.81 lei -
Preț: 376.75 lei - 20%
Preț: 622.77 lei - 20%
Preț: 947.70 lei - 18%
Preț: 921.36 lei - 20%
Preț: 957.69 lei - 20%
Preț: 960.53 lei - 15%
Preț: 621.48 lei - 20%
Preț: 626.38 lei - 20%
Preț: 959.13 lei - 15%
Preț: 616.28 lei - 20%
Preț: 970.52 lei - 20%
Preț: 954.05 lei -
Preț: 373.98 lei - 18%
Preț: 1175.82 lei - 20%
Preț: 626.25 lei - 18%
Preț: 914.66 lei - 18%
Preț: 911.78 lei
Preț: 618.33 lei
Preț vechi: 772.90 lei
-20% Nou
Puncte Express: 927
Preț estimativ în valută:
109.43€ • 128.34$ • 95.95£
109.43€ • 128.34$ • 95.95£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642072802
ISBN-10: 3642072801
Pagini: 252
Ilustrații: XV, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642072801
Pagini: 252
Ilustrații: XV, 230 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Feature Extraction Methods.- 1.2 Pattern Recognition Methods.- 2 Pre-processing and Feature Extraction.- 2.1 Pre-processing of Handwritten Images.- 2.2 Feature Extraction from Binarized Images.- 2.3 Feature Extraction Using Gabor Filters.- 2.4 Concluding Remarks.- 3 Hidden Markov Model-Based Method for Recognizing Handwritten Digits.- 3.1 Theory of Hidden Markov Models.- 3.2 Recognizing Handwritten Numerals Using Statistical and Structural Information.- 3.3 Experimental Results.- 3.4 Conclusion.- 4 Markov Models with Spectral Features for Handwritten Numeral Recognition.- 4.1 Related Work Using Contour Information.- 4.2 Fourier Descriptors.- 4.3 Hidden Markov Model in Spectral Space.- 4.4 Experimental Results.- 4.5 Discussion.- 5 Markov Random Field Model for Recognizing Handwritten Digits.- 5.1 Fundamentals of Markov Random Fields.- 5.2 Markov Random Field for Pattern Recognition.- 5.3 Recognition of Handwritten Numerals Using MRF Models.- 5.4 Conclusion.- 6 Markov Random Field Models for Recognizing Handwritten Words.- 6.1 Markov Random Field for Handwritten Word Recognition.- 6.2 Neighborhood Systems and Cliques.- 6.3 Clique Functions.- 6.4 Maximizing the Compatibility with Relaxation Labeling.- 6.5 Design of Weights.- 6.6 Experimental Results.- 6.7 Conclusion.- 7 A Structural and Relational Approach to Handwritten Word Recognition.- 7.1 Introduction.- 7.2 Gabor Parameter Estimation.- 7.3 Feature Extraction.- 7.4 Conditional Rule Generation System.- 7.5 Experimental Results.- 7.6 Conclusion.- 8 Handwritten Word Recognition Using Fuzzy Logic.- 8.1 Introduction.- 8.2 Extraction of Oriented Parts.- 8.3 System Training.- 8.4 Word Recognition.- 8.5 Experimental Results.- 8.6 Conclusion.- 9 Conclusion.- 9.1 Summary and Discussions.- 9.2 Future Directions.- 9.3 References.
Caracteristici
A fresh look at the problem of unconstrained handwriting recognition from the soft computing viewpoint