Handbook of Differential Equations:Stationary Partial Differential Equations: Handbook of Differential Equations: Stationary Partial Differential Equations, cartea 2
Editat de Michel Chipot, Pavol Quittneren Limba Engleză Hardback – 19 aug 2005
Key features:
- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.
- Self-contained volume in series covering one of the most rapid developing topics in mathematics.- 7 Chapters, enriched with numerous figures originating from numerical simulations.- Written by well known experts in the field.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Hardback (3) | 995.37 lei 36-50 zile | |
| ELSEVIER SCIENCE – 8 aug 2006 | 995.37 lei 36-50 zile | |
| ELSEVIER SCIENCE – 6 iul 2004 | 1120.72 lei 36-50 zile | |
| ELSEVIER SCIENCE – 19 aug 2005 | 1257.19 lei 43-57 zile |
Preț: 1257.19 lei
Preț vechi: 1722.17 lei
-27% Nou
Puncte Express: 1886
Preț estimativ în valută:
222.50€ • 260.93$ • 195.08£
222.50€ • 260.93$ • 195.08£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780444520456
ISBN-10: 0444520457
Pagini: 624
Dimensiuni: 165 x 240 x 29 mm
Greutate: 1.24 kg
Editura: ELSEVIER SCIENCE
Seria Handbook of Differential Equations: Stationary Partial Differential Equations
ISBN-10: 0444520457
Pagini: 624
Dimensiuni: 165 x 240 x 29 mm
Greutate: 1.24 kg
Editura: ELSEVIER SCIENCE
Seria Handbook of Differential Equations: Stationary Partial Differential Equations
Public țintă
Graduate students and academics.Cuprins
1. T. Bartsch, Zhi-Qiang Wang, M. Willem: The Dirichlet problem for superlinear elliptic equations.2. B. Dacorogna: Non convex problems of the calculus of variations and differential inclusions.3. Y. Du: Bifurcation and related topics in elliptic problems.4. J. López-Gómez: Metasolutions.5. J. D. Rossi: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem.6. G. Rozenblum, M. Melgaard: Schrödinger operators with singular potentials.7. S. Solimini: Multiplicity techniques for problems without compactness.