Cantitate/Preț
Produs

Handbook of Differential Equations: Ordinary Differential Equations: Handbook of Differential Equations: Ordinary Differential Equations, cartea 2

Editat de A. Canada, P. Drabek, A. Fonda
en Limba Engleză Hardback – 2 sep 2005
This handbook is the second volume in a series devoted to self contained and up-to-date surveys in the theory of ordinary differential equations, writtenby leading researchers in the area. All contributors have made an additional effort to achieve readability for mathematicians and scientists from other related fields, in order to make the chapters of the volume accessible to a wide audience.

. Six chapters covering a variety of problems in ordinary differential equations. . Both, pure mathematical research and real word applications are reflected. Written by leading researchers in the area.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Hardback (3) 112082 lei  5-7 săpt.
  ELSEVIER SCIENCE – 9 sep 2004 112082 lei  5-7 săpt.
  ELSEVIER SCIENCE – 2 sep 2005 125501 lei  6-8 săpt.
  ELSEVIER SCIENCE – 21 aug 2006 125650 lei  6-8 săpt.

Preț: 125501 lei

Preț vechi: 171919 lei
-27% Nou

Puncte Express: 1883

Preț estimativ în valută:
22208 26041$ 19503£

Carte tipărită la comandă

Livrare economică 30 ianuarie-13 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780444520272
ISBN-10: 0444520279
Pagini: 584
Dimensiuni: 165 x 240 x 28 mm
Greutate: 1.17 kg
Editura: ELSEVIER SCIENCE
Seria Handbook of Differential Equations: Ordinary Differential Equations


Public țintă

Mathematicians, researchers, (post-) graduate students

Cuprins

1.Optimal Control of Ordinary Differential Equations, (V. Barbu, C. Lefter).
2.Hamiltonian Systems: Periodic and Homoclinic Solutions by Variational Methods, (T. Bartsch, A. Szulkin) .

3.Differential Equations on Closed Sets (O. Carja, I.I. Vrabie) .

4.Monotone Dynamical Systems (M.W. Hirsch, H. Smith) .

5.Planar Periodic Systems of Population Dynamics (J. Lopez-Gomez) .

6.Nonlocal Initial and Boundary Value Problems: a survey (S.K. Ntouyas).