Cantitate/Preț
Produs

Fuzzy Probabilities: New Approach and Applications: Studies in Fuzziness and Soft Computing, cartea 115

Autor James J. Buckley
en Limba Engleză Paperback – iun 2012
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 31422 lei  6-8 săpt.
  Physica-Verlag HD – iun 2012 31422 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 23 noi 2014 61050 lei  6-8 săpt.
Hardback (1) 61628 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 11 mar 2005 61628 lei  6-8 săpt.

Din seria Studies in Fuzziness and Soft Computing

Preț: 31422 lei

Preț vechi: 39277 lei
-20% Nou

Puncte Express: 471

Preț estimativ în valută:
5560 6520$ 4883£

Carte tipărită la comandă

Livrare economică 04-18 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642867880
ISBN-10: 364286788X
Pagini: 180
Ilustrații: XII, 165 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.26 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Physica-Verlag HD
Colecția Physica
Seria Studies in Fuzziness and Soft Computing

Locul publicării:Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 1.1 Introduction.- 1.2 References.- 2 Fuzzy Sets.- 2.1 Introduction.- 2.2 Fuzzy Sets.- 2.3 Fuzzy Arithmetic.- 2.4 Fuzzy Functions.- 2.5 Finding the Minimum of a Fuzzy Number.- 2.6 Ordering Fuzzy Numbers.- 2.7 Fuzzy Probabilities.- 2.8 Fuzzy Numbers from Confidence Intervals.- 2.9 Computing Fuzzy Probabilities.- 2.10 Figures.- 2.11 References.- 3 Fuzzy Probability Theory.- 3.1 Introduction.- 3.2 Fuzzy Probability.- 3.3 Fuzzy Conditional Probability.- 3.4 Fuzzy Independence.- 3.5 Fuzzy Bayes’ Formula.- 3.6 Applications.- 3.7 References.- 4 Discrete Fuzzy Random Variables.- 4.1 Introduction.- 4.2 Fuzzy Binomial.- 4.3 Fuzzy Poisson.- 4.4 Applications.- 4.5 References.- 5 Fuzzy Queuing Theory.- 5.1 Introduction.- 5.2 Regular, Finite, Markov Chains.- 5.3 Fuzzy Queuing Theory.- 5.4 Applications.- 5.5 References.- 6 Fuzzy Markov Chains.- 6.1 Introduction.- 6.2 Regular Markov Chains.- 6.3 Absorbing Markov Chains.- 6.4 Application: Decision Model.- 6.5 References.- 7 Fuzzy Decisions Under Risk.- 7.1 Introduction.- 7.2 Without Data.- 7.3 With Data.- 7.4 References.- 8 Continuous Fuzzy Random Variables.- 8.1 Introduction.- 8.2 Fuzzy Uniform.- 8.3 Fuzzy Normal.- 8.4 Fuzzy Negative Exponential.- 8.5 Applications.- 8.6 References.- 9 Fuzzy Inventory Control.- 9.1 Introduction.- 9.2 Single Period Model.- 9.3 Multiple Periods.- 9.4 References.- 10 Joint Fuzzy Probability Distributions.- 10.1 Introduction.- 10.2 Continuous Case.- 10.3 References.- 11 Applications of Joint Distributions.- 11.1 Introduction.- 11.2 Political Polls.- 11.3 Fuzzy Reliability Theory.- 11.4 References.- 12 Functions of a Fuzzy Random Variable.- 12.1 Introduction.- 12.2 Discrete Fuzzy Random Variables.- 12.3 Continuous Fuzzy Random Variables.- 13 Functions of Fuzzy Random Variables.- 13.1Introduction.- 13.2 One-to-One Transformation.- 13.3 Other Transformations.- 14 Law of Large Numbers.- 15 Sums of Fuzzy Random Variables.- 15.1 Introduction.- 15.2 Sums.- 16 Conclusions and Future Research.- 16.1 Introduction.- 16.2 Summary.- 16.3 Research Agenda.- 16.4 Conclusions.- List of Figures.- List of Tables.

Caracteristici

New method of dealing with imprecise probabilities, most of which not published before Includes supplementary material: sn.pub/extras

Textul de pe ultima copertă

In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.