From Statistics to Neural Networks: Theory and Pattern Recognition Applications: NATO ASI Subseries F:, cartea 136
Editat de Vladimir Cherkassky, Jerome H. Friedman, Harry Wechsleren Limba Engleză Paperback – 22 dec 2011
Din seria NATO ASI Subseries F:
- 20%
Preț: 1233.02 lei - 20%
Preț: 625.13 lei - 20%
Preț: 642.70 lei - 20%
Preț: 953.88 lei - 18%
Preț: 1190.96 lei - 20%
Preț: 1847.73 lei - 20%
Preț: 629.08 lei - 18%
Preț: 1185.98 lei - 20%
Preț: 682.34 lei - 20%
Preț: 630.68 lei - 18%
Preț: 1782.54 lei - 20%
Preț: 360.65 lei - 20%
Preț: 953.40 lei - 20%
Preț: 645.09 lei - 20%
Preț: 1850.75 lei - 20%
Preț: 956.09 lei -
Preț: 374.71 lei - 20%
Preț: 632.58 lei - 20%
Preț: 629.88 lei - 18%
Preț: 1177.62 lei - 18%
Preț: 915.13 lei - 20%
Preț: 319.42 lei - 20%
Preț: 1234.45 lei - 20%
Preț: 619.89 lei -
Preț: 380.82 lei - 18%
Preț: 1173.54 lei - 15%
Preț: 618.50 lei - 20%
Preț: 620.52 lei - 20%
Preț: 631.00 lei - 20%
Preț: 1233.33 lei - 20%
Preț: 1849.02 lei - 20%
Preț: 348.43 lei
Preț: 626.25 lei
Preț vechi: 782.82 lei
-20% Nou
Puncte Express: 939
Preț estimativ în valută:
110.83€ • 129.98$ • 97.18£
110.83€ • 129.98$ • 97.18£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642791215
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642791212
Pagini: 416
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria NATO ASI Subseries F:
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
An Overview of Predictive Learning and Function Approximation.- Nonparametric Regression and Classification Part I Nonparametric Regression.- Nonparametric Regression and Classification Part II Nonparametric Classification.- Neural Networks, Bayesian a posteriori Probabilities, and Pattern Classification.- Flexible Non-linear Approaches to Classification.- Parametric Statistical Estimation with Artificial Neural Networks: A Condensed Discussion.- Prediction Risk and Architecture Selection for Neural Networks.- Regularisation Theory, Radial Basis Functions and Networks.- Self-Organizing Networks for Nonparametric Regression.- Neural Preprocessing Methods.- Improved Hidden Markov Models for Speech Recognition Through Neural Network Learning.- Neural Network Architectures for Pattern Recognition.- Cooperative Decision Making Processes and Their Neural Net Implementation.- Associative Memory Networks and Sparse Similarity Preserving Codes.- Multistrategy Learning and Optimal Mappings.- Self-Organizing Neural Networks for Supervised and Unsupervised Learning and Prediction.- Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture.- Chaotic Dynamics in Neural Pattern Recognition.