Cantitate/Preț
Produs

From Lévy-Type Processes to Parabolic SPDEs (Advanced Courses in Mathematics - CRM Barcelona)

De (autor) , Editat de Frederic Utzet, Lluis Quer-Sardanyons
Notă GoodReads:
en Limba Engleză Carte Paperback – 05 Jan 2017
This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis.
René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc.
In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.
Citește tot Restrânge

Din seria Advanced Courses in Mathematics - CRM Barcelona

Preț: 30783 lei

Puncte Express: 462

Preț estimativ în valută:
6136 6791$ 5260£

Carte disponibilă

Livrare economică 05-19 decembrie
Livrare express 03-11 decembrie pentru 4208 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319341194
ISBN-10: 3319341197
Pagini: 219
Dimensiuni: 168 x 240 mm
Greutate: 0.41 kg
Ediția: 1st ed. 2016
Editura: Springer
Colecția Birkhäuser
Seria Advanced Courses in Mathematics - CRM Barcelona

Locul publicării: Cham, Switzerland

Cuprins

Invariance and comparison principles for parabolic stochastic partial differential equations.- An introduction to Lévy and Feller processes.

Recenzii

“The presentation also includes materials reviewing the classical theory of Markov processes, operator semigroups and random measures, which makes the notes self-contained and an excellent introductory material to the theory of  Lévy and Feller processes. ... It is nice to read and it provides exhaustive treatments of the topics.” (Nikola Sandrić, zbMATH 1382.60005, 2018)

Notă biografică

Davar Khoshnevisan is Professor of Mathematics at The University of Utah.
René L. Schilling is Professor of Probability at Technische Universität Dresden.

Textul de pe ultima copertă

This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis.
René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc.
In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

Caracteristici

Studies invariance and comparison principles for parabolic SPDEs in a very general framework beyond the classical setting

Presents an extensive introduction to Lévy processes, including the different constructions

Provides properties of Feller processes as space inhomogeneous processes that behave locally like Lévy processes