Cantitate/Preț
Produs

Exploratory Data Analysis Using R

Autor Ronald K. Pearson
en Limba Engleză Hardback – 19 mai 2026
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA), and this revised edition is accompanied by the R package ExploreTheData that implements many of the approaches described. The focus is the use of R to explore and explain datasets and the analysis results derived from them.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 27920 lei  6-8 săpt.
  CRC Press – 30 iun 2020 27920 lei  6-8 săpt.
  Taylor & Francis Ltd. – 19 mai 2026 37239 lei  Precomandă
Hardback (2) 85974 lei  6-8 săpt.
  CRC Press – 29 mai 2018 85974 lei  6-8 săpt.
  Taylor & Francis Ltd. – 19 mai 2026 67305 lei  Precomandă

Preț: 67305 lei

Preț vechi: 84131 lei
-20% Precomandă

Puncte Express: 1010

Preț estimativ în valută:
11910 13966$ 10459£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032814810
ISBN-10: 1032814810
Pagini: 592
Dimensiuni: 156 x 234 mm
Greutate: 0.45 kg
Ediția:2. Auflage
Editura: Taylor & Francis Ltd.

Cuprins

I Analyzing Data Interactively with R  1. Data, Exploratory Analysis, and R  2. Graphics in R  3. Exploratory Data Analysis: A First Look  4. Working with External Data  5. Linear Regression Models  6. Crafting Data Stories  II Developing R Programs  7. Programming in R  8. Working with Text Data  9. Exploratory Data Analysis: A Second Look  10. More General Predictive Models  11. Keeping It All Together

Notă biografică

Ronald K. Pearson currently works for GeoVera, a property insurance company in Fairfield, California, primarily in the analysis of text data. He holds a PhD in Electrical Engineering and Computer Science from the Massachussetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python, co-authored with Moncef Gabbouj (CRC Press, 2015). He is also the developer of the DataCamp course on base R graphics.