Cantitate/Preț
Produs

Exploratory Data Analysis Using R: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

Autor Ronald K. Pearson
en Limba Engleză Paperback – 15 apr 2026
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA), and this revised edition is accompanied by the R package ExploreTheData that implements many of the approaches described. The focus is the use of R to explore and explain datasets and the analysis results derived from them.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 27920 lei  6-8 săpt.
  CRC Press – 30 iun 2020 27920 lei  6-8 săpt.
  Taylor & Francis Ltd. – 15 apr 2026 35143 lei  Precomandă
Hardback (1) 85974 lei  6-8 săpt.
  CRC Press – 29 mai 2018 85974 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

Preț: 35143 lei

Preț vechi: 43928 lei
-20% Precomandă

Puncte Express: 527

Preț estimativ în valută:
6218 7302$ 5458£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032814803
ISBN-10: 1032814802
Pagini: 592
Dimensiuni: 156 x 234 mm
Greutate: 0.45 kg
Ediția:2. Auflage
Editura: Taylor & Francis Ltd.
Seria Chapman & Hall/CRC Data Mining and Knowledge Discovery Series


Cuprins

I Analyzing Data Interactively with R  1. Data, Exploratory Analysis, and R  2. Graphics in R  3. Exploratory Data Analysis: A First Look  4. Working with External Data  5. Linear Regression Models  6. Crafting Data Stories  II Developing R Programs  7. Programming in R  8. Working with Text Data  9. Exploratory Data Analysis: A Second Look  10. More General Predictive Models  11. Keeping It All Together

Notă biografică

Ronald K. Pearson currently works for GeoVera, a property insurance company in Fairfield, California, primarily in the analysis of text data. He holds a PhD in Electrical Engineering and Computer Science from the Massachussetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python, co-authored with Moncef Gabbouj (CRC Press, 2015). He is also the developer of the DataCamp course on base R graphics.