Estimation, Control, and the Discrete Kalman Filter: Applied Mathematical Sciences, cartea 71
Autor Donald E. Catlinen Limba Engleză Paperback – 26 sep 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 908.00 lei 6-8 săpt. | |
| Springer – 26 sep 2011 | 908.00 lei 6-8 săpt. | |
| Hardback (1) | 914.35 lei 6-8 săpt. | |
| Springer – 9 noi 1988 | 914.35 lei 6-8 săpt. |
Din seria Applied Mathematical Sciences
- 15%
Preț: 470.68 lei - 15%
Preț: 470.18 lei - 15%
Preț: 471.44 lei - 24%
Preț: 639.55 lei - 18%
Preț: 713.59 lei -
Preț: 380.26 lei - 15%
Preț: 462.89 lei - 18%
Preț: 764.22 lei - 18%
Preț: 815.14 lei - 24%
Preț: 874.54 lei -
Preț: 414.07 lei - 15%
Preț: 565.82 lei -
Preț: 182.75 lei -
Preț: 383.96 lei - 15%
Preț: 618.64 lei - 15%
Preț: 508.48 lei -
Preț: 397.45 lei -
Preț: 375.44 lei - 18%
Preț: 1356.28 lei - 15%
Preț: 683.72 lei -
Preț: 380.46 lei - 18%
Preț: 977.74 lei -
Preț: 387.82 lei - 18%
Preț: 1090.73 lei - 18%
Preț: 1329.58 lei - 18%
Preț: 1085.72 lei - 18%
Preț: 1096.36 lei - 15%
Preț: 627.93 lei -
Preț: 387.82 lei -
Preț: 438.72 lei - 15%
Preț: 627.62 lei - 15%
Preț: 618.03 lei -
Preț: 377.48 lei - 15%
Preț: 621.67 lei
Preț: 908.00 lei
Preț vechi: 1107.32 lei
-18% Nou
Puncte Express: 1362
Preț estimativ în valută:
160.65€ • 187.44$ • 140.45£
160.65€ • 187.44$ • 140.45£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461288640
ISBN-10: 1461288649
Pagini: 296
Ilustrații: XIV, 276 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 1461288649
Pagini: 296
Ilustrații: XIV, 276 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.42 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Basic Probability.- 1.1. Definitions.- 1.2. Probability Distributions and Densities.- 1.3. Expected Value, Covariance.- 1.4. Independence.- 1.5. The Radon—Nikodym Theorem.- 1.6. Continuously Distributed Random Vectors.- 1.7. The Matrix Inversion Lemma.- 1.8. The Multivariate Normal Distribution.- 1.9. Conditional Expectation.- 1.10. Exercises.- 2 Minimum Variance Estimation—How the Theory Fits.- 2.1. Theory Versus Practice—Some General Observations.- 2.2. The Genesis of Minimum Variance Estimation.- 2.3. The Minimum Variance Estimation Problem.- 2.4. Calculating the Minimum Variance Estimator.- 2.5. Exercises.- 3 The Maximum Entropy Principle.- 3.1. Introduction.- 3.2. The Notion of Entropy.- 3.3. The Maximum Entropy Principle.- 3.4. The Prior Covariance Problem.- 3.5. Minimum Variance Estimation with Prior Covariance.- 3.6. Some Criticisms and Conclusions.- 3.7. Exercises.- 4 Adjoints, Projections, Pseudoinverses.- 4.1. Adjoints.- 4.2. Projections.- 4.3. Pseudoinverses.- 4.4. Calculating the Pseudoinverse in Finite Dimensions.- 4.5. The Grammian.- 4.6. Exercises.- 5 Linear Minimum Variance Estimation.- 5.1. Reformulation.- 5.2. Linear Minimum Variance Estimation.- 5.3. Unbiased Estimators, Affine Estimators.- 5.4. Exercises.- 6 Recursive Linear Estimation (Bayesian Estimation).- 6.1. Introduction.- 6.2. The Recursive Linear Estimator.- 6.3. Exercises.- 7 The Discrete Kalman Filter.- 7.1. Discrete Linear Dynamical Systems.- 7.2. The Kalman Filter.- 7.3. Initialization, Fisher Estimation.- 7.4. Fisher Estimation with Singular Measurement Noise.- 7.5. Exercises.- 8 The Linear Quadratic Tracking Problem.- 8.1. Control of Deterministic Systems.- 8.2. Stochastic Control with Perfect Observations.- 8.3. Stochastic Control with Imperfect Measurement.- 8.4. Exercises.-9 Fixed Interval Smoothing.- 9.1. Introduction.- 9.2. The Rauch, Tung, Streibel Smoother.- 9.3. The Two-Filter Form of the Smoother.- 9.4. Exercises.- Appendix A Construction Measures.- Appendix B Two Examples from Measure Theory.- Appendix C Measurable Functions.- Appendix D Integration.- Appendix E Introduction to Hilbert Space.- Appendix F The Uniform Boundedness Principle and Invertibility of Operators.