Emergent Neural Computational Architectures Based on Neuroscience: Towards Neuroscience-Inspired Computing: Lecture Notes in Computer Science, cartea 2036
Editat de Stefan Wermter, Jim Austin, David Willshawen Limba Engleză Paperback – 25 iul 2001
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei -
Preț: 395.25 lei - 20%
Preț: 327.36 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 328.94 lei - 20%
Preț: 340.04 lei - 20%
Preț: 487.46 lei - 20%
Preț: 629.71 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 782.57 lei - 20%
Preț: 679.09 lei - 20%
Preț: 330.54 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 435.28 lei - 20%
Preț: 375.72 lei - 20%
Preț: 342.61 lei - 20%
Preț: 432.78 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 373.80 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 793.92 lei - 20%
Preț: 324.19 lei - 20%
Preț: 733.68 lei - 20%
Preț: 336.86 lei - 20%
Preț: 327.36 lei - 20%
Preț: 573.45 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 560.93 lei - 20%
Preț: 560.93 lei - 20%
Preț: 631.96 lei - 20%
Preț: 568.70 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 634.45 lei
Preț vechi: 793.07 lei
-20%
Puncte Express: 952
Preț estimativ în valută:
112.16€ • 133.73$ • 97.28£
112.16€ • 133.73$ • 97.28£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9783540423638
ISBN-10: 354042363X
Pagini: 592
Ilustrații: X, 582 p.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.82 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354042363X
Pagini: 592
Ilustrații: X, 582 p.
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.82 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Towards Novel Neuroscience-Inspired Computing.- Towards Novel Neuroscience-Inspired Computing.- Modular Organisation and Robustness.- Images of the Mind: Brain Images and Neural Networks.- Stimulus-Independent Data Analysis for fMRI.- Emergence of Modularity within One Sheet of Neurons: A Model Comparison.- Computational Investigation of Hemispheric Specialization and Interactions.- Explorations of the Interaction between Split Processing and Stimulus Types.- Modularity and Specialized Learning: Mapping between Agent Architectures and Brain Organization.- Biased Competition Mechanisms for Visual Attention in a Multimodular Neurodynamical System.- Recurrent Long-Range Interactions in Early Vision.- Neural Mechanisms for Representing Surface and Contour Features.- Representations of Neuronal Models Using Minimal and Bilinear Realisations.- Collaborative Cell Assemblies: Building Blocks of Cortical Computation.- On the Influence of Threshold Variability in a Mean-Field Model of the Visual Cortex.- Towards Computational Neural Systems through Developmental Evolution.- The Complexity of the Brain: Structural, Functional, and Dynamic Modules.- Timing and Synchronisation.- Synchronisation, Binding, and the Role of Correlated Firing in Fast Information Transmission.- Segmenting State into Entities and Its Implication for Learning.- Temporal Structure of Neural Activity and Modelling of Information Processing in the Brain.- Role of the Cerebellum in Time-Critical Goal-Oriented Behaviour: Anatomical Basis and Control Principle.- Locust Olfaction.- Temporal Coding in Neuronal Populations in the Presence of Axonal and Dendritic Conduction Time Delays.- The Role of Brain Chaos.- Neural Network Classification of Word Evoked Neuromagnetic Brain Activity.- Simulation Studies of the Speed of Recurrent Processing.- Learning and Memory Storage.- The Dynamics of Learning and Memory: Lessons from Neuroscience.- Biological Grounding of Recruitment Learning and Vicinal Algorithms in Long-Term Potentiation.- Plasticity and Nativism: Towards a Resolution of an Apparent Paradox.- Cell Assemblies as an Intermediate Level Model of Cognition.- Modelling Higher Cognitive Functions with Hebbian Cell Assemblies.- Spiking Associative Memory and Scene Segmentation by Synchronization of Cortical Activity.- A Familiarity Discrimination Algorithm Inspired by Computations of the Perirhinal Cortex.- Linguistic Computation with State Space Trajectories.- Robust Stimulus Encoding in Olfactory Processing: Hyperacuity and Efficient Signal Transmission.- Finite-State Computation in Analog Neural Networks: Steps towards Biologically Plausible Models?.- An Investigation into the Role of Cortical Synaptic Depression in Auditory Processing.- The Role of Memory, Anxiety, and Hebbian Learning in Hippocampal Function: Novel Explorations in Computational Neuroscience and Robotics.- Using a Time-Delay Actor-Critic Neural Architecture with Dopamine-Like Reinforcement Signal for Learning in Autonomous Robots.- Connectionist Propositional Logic A Simple Correlation Matrix Memory Based Reasoning System.- Analysis and Synthesis of Agents That Learn from Distributed Dynamic Data Sources.- Connectionist Neuroimaging.
Caracteristici
Includes supplementary material: sn.pub/extras