Deep Learning Techniques for IoT Security and Privacy
Autor Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Dingen Limba Engleză Hardback – 6 dec 2021
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 1003.75 lei 6-8 săpt. | |
| Springer – 7 dec 2022 | 1003.75 lei 6-8 săpt. | |
| Hardback (1) | 1009.30 lei 6-8 săpt. | |
| Springer – 6 dec 2021 | 1009.30 lei 6-8 săpt. |
Preț: 1009.30 lei
Preț vechi: 1261.63 lei
-20% Nou
Puncte Express: 1514
Preț estimativ în valută:
178.57€ • 208.35$ • 156.12£
178.57€ • 208.35$ • 156.12£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030890247
ISBN-10: 3030890244
Pagini: 280
Ilustrații: XXI, 257 p. 71 illus., 69 illus. in color.
Dimensiuni: 160 x 241 x 21 mm
Greutate: 0.59 kg
Ediția:1st ed. 2022
Editura: Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3030890244
Pagini: 280
Ilustrații: XXI, 257 p. 71 illus., 69 illus. in color.
Dimensiuni: 160 x 241 x 21 mm
Greutate: 0.59 kg
Ediția:1st ed. 2022
Editura: Springer
Locul publicării:Cham, Switzerland
Cuprins
Chapter 1, Conceptualization of Security, Forensics, and Privacy of Internet of Things.- Chapter 2, Internet of Things, Preliminaries and Foundations.- Chapter 3, Internet of Things Security Requirements, Threats, Countermeasures.- Chapter 4, Digital Forensics in Internet of Things.- Chapter 5, Supervised Deep Learning for Secure Internet of Things.- Chapter 6, Unsupervised Deep Learning for Secure Internet of Things.- Chapter 7, Semi-supervised Deep Learning for Secure Internet of Things.- Chapter 8, Reinforcement Learning for Secure Internet of Things.- Chapter 9, Federated Learning for Privacy-Preserving Internet of Things.- Chapter 10, Challenges, Opportunities, and Future Prospects.
Textul de pe ultima copertă
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
Caracteristici
Presents a Machine Learning Approach to Conducting Digital Forensics Contains state-of-the-art research and shows how to teach hands-on incident response and digital forensic courses Covers the applications of digital forensics and artificial intelligence in operating systems