Cantitate/Preț
Produs

Data Mining: Foundations and Intelligent Paradigms: VOLUME 2: Statistical, Bayesian, Time Series and other Theoretical Aspects: Intelligent Systems Reference Library, cartea 24

Editat de Dawn E. Holmes, Lakhmi C Jain
en Limba Engleză Hardback – 7 noi 2011
There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayesian Analysis” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (3) 94707 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 26 ian 2014 94707 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 26 ian 2014 95134 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 22 feb 2014 95294 lei  6-8 săpt.
Hardback (3) 95151 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 7 noi 2011 95151 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 7 noi 2011 95627 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 13 ian 2012 95881 lei  6-8 săpt.

Din seria Intelligent Systems Reference Library

Preț: 95151 lei

Preț vechi: 118939 lei
-20% Nou

Puncte Express: 1427

Preț estimativ în valută:
16842 19709$ 14734£

Carte tipărită la comandă

Livrare economică 23 ianuarie-06 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642232404
ISBN-10: 364223240X
Pagini: 264
Ilustrații: XIV, 250 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Intelligent Systems Reference Library

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

From the content: Data Mining with Multilayer Perceptrons and Support Vector Machines.- Regulatory Networks under Ellipsoidal Uncertainty - Data Analysis and Prediction by Optimization Theory and Dynamical Systems.- A Visual Environment for Designing and Running Data Mining Workflows in the Knowledge Grid.- Formal framework for the Study of Algorithmic Properties of Objective Interestingness Measures.- Nonnegative Matrix Factorization: Models, Algorithms and Applications.- Visual Data Mining and Discovery with Binarized Vectors.

Textul de pe ultima copertă

Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 2 of this three volume series, we have brought together contributions from some of the most prestigious researchers in theoretical data mining. Each of the chapters is self contained. Statisticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in data mining.

Caracteristici

contains the latest research on data mining research and its applications to health informatics The state of the art of data mining for health informatics is presented in a handbook style Written by leading experts in this field