Conjectures in Arithmetic Algebraic Geometry: A Survey: Aspects of Mathematics, cartea 18
Autor Wilfred W. J. Hulsbergenen Limba Engleză Paperback – 1992
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 371.00 lei 43-57 zile | |
| Vieweg+Teubner Verlag – 1992 | 371.00 lei 43-57 zile | |
| Vieweg+Teubner Verlag – 3 oct 2013 | 452.82 lei 43-57 zile |
Din seria Aspects of Mathematics
- 18%
Preț: 753.77 lei -
Preț: 373.03 lei - 15%
Preț: 618.50 lei -
Preț: 404.93 lei -
Preț: 473.03 lei - 15%
Preț: 613.00 lei -
Preț: 434.80 lei - 18%
Preț: 749.53 lei - 18%
Preț: 858.40 lei - 15%
Preț: 452.82 lei -
Preț: 372.15 lei -
Preț: 459.63 lei -
Preț: 402.25 lei -
Preț: 383.26 lei -
Preț: 369.36 lei - 15%
Preț: 564.27 lei - 15%
Preț: 447.01 lei -
Preț: 371.93 lei -
Preț: 356.69 lei - 15%
Preț: 615.05 lei -
Preț: 379.89 lei -
Preț: 378.58 lei -
Preț: 406.24 lei - 18%
Preț: 761.52 lei - 15%
Preț: 484.48 lei -
Preț: 370.46 lei -
Preț: 380.82 lei - 15%
Preț: 677.14 lei - 15%
Preț: 457.05 lei - 24%
Preț: 856.61 lei -
Preț: 402.90 lei -
Preț: 368.79 lei -
Preț: 338.94 lei -
Preț: 368.23 lei - 20%
Preț: 343.13 lei -
Preț: 465.60 lei -
Preț: 466.54 lei - 20%
Preț: 341.21 lei - 15%
Preț: 449.98 lei - 15%
Preț: 449.85 lei -
Preț: 439.62 lei -
Preț: 403.83 lei -
Preț: 405.14 lei
Preț: 371.00 lei
Nou
Puncte Express: 557
Preț estimativ în valută:
65.66€ • 77.00$ • 57.57£
65.66€ • 77.00$ • 57.57£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783528064334
ISBN-10: 3528064331
Pagini: 252
Ilustrații: VII, 240 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3528064331
Pagini: 252
Ilustrații: VII, 240 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
ResearchCuprins
1 The zero-dimensional case: number fields.- 1.1 Class Numbers.- 1.2 Dirichlet L-Functions.- 1.3 The Class Number Formula.- 1.4 Abelian Number Fields.- 1.5 Non-abelian Number Fields and Artin L-Functions.- 2 The one-dimensional case: elliptic curves.- 2.1 General Features of Elliptic Curves.- 2.2 Varieties over Finite Fields.- 2.3 L-Functions of Elliptic Curves.- 2.4 Complex Multiplication and Modular Elliptic Curves.- 2.5 Arithmetic of Elliptic Curves.- 2.6 The Tate-Shafarevich Group.- 2.7 Curves of Higher Genus.- 2.8 Appendix.- 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.- 3.1 The Standard Conjectures.- 3.2 Deligne-Beilinson Cohomology.- 3.3 Deligne Homology.- 3.4 Poincaré Duality Theories.- 4 Riemann-Roch, K-theory and motivic cohomology.- 4.1 Grothendieck-Riemann-Roch.- 4.2 Adams Operations.- 4.3 Riemann-Roch for Singular Varieties.- 4.4 Higher Algebraic K-Theory.- 4.5 Adams Operations in Higher Algebraic K-Theory.- 4.6 Chern Classes in Higher Algebraic K-Theory.- 4.7 Gillet’s Riemann-Roch Theorem.- 4.8 Motivic Cohomology.- 5 Regulators, Deligne’s conjecture and Beilinson’s first conjecture.- 5.1 Borel’s Regulator.- 5.2 Beilinson’s Regulator.- 5.3 Special Cases and Zagier’s Conjecture.- 5.4 Riemann Surfaces.- 5.5 Models over Spec(Z).- 5.6 Deligne’s Conjecture.- 5.7 Beilinson’s First Conjecture.- 6 Beilinson’s second conjecture.- 6.1 Beilinson’s Second Conjecture.- 6.2 Hilbert Modular Surfaces.- 7 Arithmetic intersections and Beilinson’s third conjecture.- 7.1 The Intersection Pairing.- 7.2 Beilinson’s Third Conjecture.- 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.- 8.1 The Hodge Conjecture.- 8.2 Absolute Hodge Cohomology.- 8.3 Geometric Interpretation.- 8.4Abel-Jacobi Maps.- 8.5 The Tate Conjecture.- 8.6 Absolute Hodge Cycles.- 8.7 Motives.- 8.8 Grothendieck’s Conjectures.- 8.9 Motives and Cohomology.- 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.- 9.1 Tate Modules.- 9.2 Mixed Realizations.- 9.3 Weights.- 9.4 Hodge and Tate Conjectures.- 9.5 The Homological Regulator.- 10 Examples and Results.- 10.1 B & S-D revisited.- 10.2 Deligne’s Conjecture.- 10.3 Artin and Dirichlet Motives.- 10.4 Modular Curves.- 10.5 Other Modular Examples.- 10.6 Linear Varieties.
Notă biografică
Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.