Ball and Surface Arithmetics: Aspects of Mathematics, cartea 29
Autor Rolf-Peter Holzapfelen Limba Engleză Paperback – 19 mai 2012
Din seria Aspects of Mathematics
- 18%
Preț: 753.77 lei -
Preț: 373.03 lei - 15%
Preț: 618.50 lei -
Preț: 404.93 lei -
Preț: 473.03 lei - 15%
Preț: 613.00 lei -
Preț: 434.80 lei - 18%
Preț: 749.53 lei - 18%
Preț: 858.40 lei - 15%
Preț: 452.82 lei -
Preț: 372.15 lei -
Preț: 459.63 lei -
Preț: 402.25 lei -
Preț: 383.26 lei -
Preț: 369.36 lei - 15%
Preț: 564.27 lei - 15%
Preț: 447.01 lei -
Preț: 371.93 lei -
Preț: 356.69 lei - 15%
Preț: 615.05 lei -
Preț: 378.58 lei -
Preț: 406.24 lei - 18%
Preț: 761.52 lei - 15%
Preț: 484.48 lei -
Preț: 370.46 lei -
Preț: 380.82 lei - 15%
Preț: 677.14 lei - 15%
Preț: 457.05 lei - 24%
Preț: 856.61 lei -
Preț: 402.90 lei -
Preț: 368.79 lei -
Preț: 338.94 lei -
Preț: 368.23 lei - 20%
Preț: 343.13 lei -
Preț: 465.60 lei -
Preț: 466.54 lei - 20%
Preț: 341.21 lei - 15%
Preț: 449.98 lei - 15%
Preț: 449.85 lei -
Preț: 439.62 lei -
Preț: 403.83 lei -
Preț: 405.14 lei
Preț: 379.89 lei
Nou
Puncte Express: 570
Preț estimativ în valută:
67.24€ • 78.69$ • 58.83£
67.24€ • 78.69$ • 58.83£
Carte tipărită la comandă
Livrare economică 23 ianuarie-06 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783322901712
ISBN-10: 3322901718
Pagini: 432
Ilustrații: XIV, 414 p.
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3322901718
Pagini: 432
Ilustrații: XIV, 414 p.
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1998
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Aspects of Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
1 Abelian Points.- 1.1 Cyclic Points.- 1.2 Graphs of Abelian Points.- 1.3 Geometric Interpretation.- 1.4 Derived Representations.- 1.5 The Differential Relation.- 1.6 Stepwise Resolutions of Cyclic Points.- 1.7 Continued Fractions and Selfintersection Numbers.- 1.8 Reciprocity Law for Geometric Sums.- 1.9 Explicit Dedekind Sums.- 1.10 Eisenstein Sums.- 1.11 Hirzebruch’s Sum.- 1.12 Geometric Interpretation.- 1.13 Quotients and Coverings of Modifications.- 1.14 Selfintersections of Quotient Curves.- 1.15 The Bridge Algorithm.- 1.16 First Orbital Properties.- 1.17 Local Orbital Euler Numbers.- 1.18 Absorptive Numbers.- 2 Orbital Curves.- 2.1 Point Arrangements on Curves.- 2.2 Euler Heights of Orbital Curves.- 2.3 The Geometric Local-Global Principle.- 2.4 Signature Heights of Orbital Curves.- 3 Orbital Surfaces.- 3.1 Regular Arrangements on Surfaces.- 3.2 Basic Invariants and Fixed Point Theorem.- 3.3 Euler Heights.- 3.4 Signature Heights.- 3.5 Quasi-homogeneous Points, Quotient Points and Cusp Points.- 3.6 Quasi-smooth Orbital Surfaces.- 3.7 Open Orbital Surfaces.- 3.8 Orbital Decompositions.- 4 Ball Quotient Surfaces.- 4.1 Ball Lattices.- 4.2 Neat Ball Cusp Lattices.- 4.3 Invariants of Neat Ball Quotient Surfaces.- 4.4 ?-Rational Discs.- 4.5 Cusp Singularities, Reflections and Elliptic Points.- 4.6 Orbital Ball Quotient Surfaces and Molecular.- 4.7 Invariants of Disc Quotient Curves.- 4.8 Invariants of Ball Quotient Surfaces.- 4.9 Global Proportionality.- 4.10 Orbital Decompositions and the Finiteness Theorem.- 4.11 Leading Examples.- 4.12 Towards the Count of Ball Metrics on Non-Compact Surfaces.- 5 Picard Modular Surfaces.- 5.1 Classification Diagram.- 5.2 Picard Modular Surface of the Field of Eisenstein Numbers.- 5.3 Picard Modular Surface of the Field ofGauss-Numbers.- 5.4 Kodaira Classification of Picard Modular Surfaces.- 5.5 Special Results and Examples.- 5A Volumes of Fundamental Domains of Picard Modular Groups.- 5A.1 The Order of Finite Unitary Groups.- 5A.2 Index of Congruence Subgroups.- 5A.3 Local Volumina.- 5A.4 The Global Volume.- 6 ?-Orbital Surfaces.- 6.1 Introduction.- 6.2 Arrangements with Rational Coefficients.- 6.3 Finite Morphisms of ?-Orbital Surfaces.- 6.4 Functorial Properties for Rational Invariants.- 6.5 Euler and Signature Heights.- 6.6 Reduction of Galois-Finite Morphisms.- 6.7 Local Base Changes.- 6.8 Global Base Changes.- 6.9 Explicit Hurwitz Formulas for Finite Surface Coverings.- 6.10 Finite Coverings of Ruled Surfaces and the Inequality c12 ? 2c2.
Notă biografică
Dr. Rolf-Peter Holzapfel ist Mitglied der Arbeitsgruppe "Allgebraische Geometrie und Zahlentheorie" am Max-Planck-Institut zur Förderung der Wissenschaften, Berlin.