Computational Methods in Bifurcation Theory and Dissipative Structures: Scientific Computation
Autor M. Kubicek, M. Mareken Limba Engleză Paperback – 9 apr 2012
Din seria Scientific Computation
- 18%
Preț: 855.21 lei - 18%
Preț: 714.52 lei - 18%
Preț: 981.37 lei -
Preț: 385.79 lei -
Preț: 385.64 lei - 20%
Preț: 976.25 lei -
Preț: 371.93 lei - 15%
Preț: 629.35 lei - 18%
Preț: 1065.40 lei -
Preț: 373.24 lei -
Preț: 374.54 lei - 18%
Preț: 913.16 lei - 15%
Preț: 624.14 lei - 18%
Preț: 809.09 lei - 18%
Preț: 906.03 lei - 15%
Preț: 485.76 lei - 15%
Preț: 627.79 lei -
Preț: 374.91 lei -
Preț: 365.82 lei - 18%
Preț: 920.28 lei - 18%
Preț: 1068.14 lei -
Preț: 435.38 lei - 15%
Preț: 624.33 lei -
Preț: 373.40 lei - 18%
Preț: 921.17 lei - 18%
Preț: 1085.59 lei - 18%
Preț: 930.00 lei - 15%
Preț: 673.68 lei - 15%
Preț: 574.94 lei -
Preț: 371.00 lei -
Preț: 379.89 lei -
Preț: 370.46 lei - 18%
Preț: 1063.59 lei - 15%
Preț: 484.80 lei - 15%
Preț: 628.73 lei - 15%
Preț: 619.12 lei - 15%
Preț: 573.38 lei
Preț: 371.37 lei
Nou
Puncte Express: 557
Preț estimativ în valută:
65.73€ • 77.08$ • 57.63£
65.73€ • 77.08$ • 57.63£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642859595
ISBN-10: 3642859593
Pagini: 260
Ilustrații: XII, 243 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642859593
Pagini: 260
Ilustrații: XII, 243 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Scientific Computation
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 General Introduction.- 1.2 Dissipative Structures in Physical, Chemical, and Biological Systems.- 1.3 Basic Concepts and Properties of Nonlinear Systems.- 1.4 Examples.- 2. Multiplicity and Stability in Lumped-Parameter Systems (LPS).- 2.1 Steady-State Solutions.- 2.2 Dependence of Steady-State Solutions on a Parameter—Solution Diagram.- 2.3 Stability of Steady-State Solutions.- 2.4 Branch Points—Real Bifurcation.- 2.5 Branch Points—Complex Bifurcations.- 2.6 Bifurcation Diagram.- 2.7 Transient Behavior of LPS—Numerical Methods.- 2.8 Computation of Periodic Solutions.- 2.9 Chaotic Attractors.- 3. Multiplicity and Stability in Distributed-Parameter Systems (DPS).- 3.1 Steady-State Solutions—Methods for Solving Nonlinear Boundary-Value Problems.- 3.2 Dependence of Steady-State Solutions on a Parameter.- 3.3 Branch Points—Methods for Evaluating Real and Complex Bifurcation Points.- 3.4 Methods for Transient Simulation of Parabolic Equations—Finite-Difference Methods.- 4. Development of Quasi-stationary Patterns with Changing Parameter.- 4.1 Quasi-stationary Behavior in LPS—Examples.- 4.2 Quasi-stationary Behavior in DPS—Examples.- 5. Perspectives.- Appendix A DERPAR—A Continuation Algorithm.- Appendix B SHOOT—An Algorithm for Solving Nonlinear Boundary-Value Problems by the Shooting Method.- Appendix C Bifurcation and Stability Theory.- C. 1 Invariant Manifolds and the Center-Manifold Theorem (Reduction of Dimension).- C.2 Normal Forms.- C.3 Bifurcation of Singular Points of Vector Fields.- C.4 Codimension of a Vector Field. Unfolding of a Vector Field.- C.5 Construction of a Versal Deformation.- C.6 Bifurcations of Codimension 2.- C.7 Bifurcations from Limit Cycles.- References.