Computational Learning Theory: 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16-19, 2001, Proceedings: Lecture Notes in Computer Science, cartea 2111
Editat de David Helmbold, Bob Williamsonen Limba Engleză Paperback – 4 iul 2001
Din seria Lecture Notes in Computer Science
- 15%
Preț: 558.12 lei - 20%
Preț: 573.45 lei - 20%
Preț: 330.54 lei - 20%
Preț: 620.33 lei - 20%
Preț: 400.77 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 629.71 lei - 20%
Preț: 328.94 lei - 20%
Preț: 375.72 lei - 20%
Preț: 568.70 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 489.11 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 782.57 lei - 20%
Preț: 336.86 lei - 20%
Preț: 560.93 lei - 20%
Preț: 850.42 lei - 20%
Preț: 432.78 lei - 20%
Preț: 342.61 lei - 20%
Preț: 631.96 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 487.46 lei - 20%
Preț: 400.17 lei - 20%
Preț: 984.64 lei - 20%
Preț: 556.96 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 793.92 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 679.09 lei - 20%
Preț: 558.53 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 560.93 lei - 20%
Preț: 324.19 lei - 20%
Preț: 1079.23 lei - 20%
Preț: 735.28 lei - 20%
Preț: 373.80 lei -
Preț: 395.25 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 657.63 lei
Preț vechi: 822.04 lei
-20%
Puncte Express: 986
Preț estimativ în valută:
116.27€ • 138.91$ • 100.72£
116.27€ • 138.91$ • 100.72£
Carte tipărită la comandă
Livrare economică 14-28 martie
Specificații
ISBN-13: 9783540423430
ISBN-10: 3540423435
Pagini: 648
Ilustrații: DCXLVIII, 638 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 1.48 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540423435
Pagini: 648
Ilustrații: DCXLVIII, 638 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 1.48 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
How Many Queries Are Needed to Learn One Bit of Information?.- Radial Basis Function Neural Networks Have Superlinear VC Dimension.- Tracking a Small Set of Experts by Mixing Past Posteriors.- Potential-Based Algorithms in Online Prediction and Game Theory.- A Sequential Approximation Bound for Some Sample-Dependent Convex Optimization Problems with Applications in Learning.- Efficiently Approximating Weighted Sums with Exponentially Many Terms.- Ultraconservative Online Algorithms for Multiclass Problems.- Estimating a Boolean Perceptron from Its Average Satisfying Assignment: A Bound on the Precision Required.- Adaptive Strategies and Regret Minimization in Arbitrarily Varying Markov Environments.- Robust Learning — Rich and Poor.- On the Synthesis of Strategies Identifying Recursive Functions.- Intrinsic Complexity of Learning Geometrical Concepts from Positive Data.- Toward a Computational Theory of Data Acquisition and Truthing.- Discrete Prediction Games with Arbitrary Feedback and Loss (Extended Abstract).- Rademacher and Gaussian Complexities: Risk Bounds and Structural Results.- Further Explanation of the Effectiveness of Voting Methods: The Game between Margins and Weights.- Geometric Methods in the Analysis of Glivenko-Cantelli Classes.- Learning Relatively Small Classes.- On Agnostic Learning with {0, *, 1}-Valued and Real-Valued Hypotheses.- When Can Two Unsupervised Learners Achieve PAC Separation?.- Strong Entropy Concentration, Game Theory, and Algorithmic Randomness.- Pattern Recognition and Density Estimation under the General i.i.d. Assumption.- A General Dimension for Exact Learning.- Data-Dependent Margin-Based Generalization Bounds for Classification.- Limitations of Learning via Embeddings in Euclidean Half-Spaces.- Estimating the OptimalMargins of Embeddings in Euclidean Half Spaces.- A Generalized Representer Theorem.- A Leave-One-out Cross Validation Bound for Kernel Methods with Applications in Learning.- Learning Additive Models Online with Fast Evaluating Kernels.- Geometric Bounds for Generalization in Boosting.- Smooth Boosting and Learning with Malicious Noise.- On Boosting with Optimal Poly-Bounded Distributions.- Agnostic Boosting.- A Theoretical Analysis of Query Selection for Collaborative Filtering.- On Using Extended Statistical Queries to Avoid Membership Queries.- Learning Monotone DNF from a Teacher That Almost Does Not Answer Membership Queries.- On Learning Monotone DNF under Product Distributions.- Learning Regular Sets with an Incomplete Membership Oracle.- Learning Rates for Q-Learning.- Optimizing Average Reward Using Discounted Rewards.- Bounds on Sample Size for Policy Evaluation in Markov Environments.
Caracteristici
Includes supplementary material: sn.pub/extras