Complex Analysis

De (autor) ,
Notă GoodReads:
en Limba Engleză Paperback – 23 Aug 2018
This new edition of a classic textbook develops complex analysis from the established theory of real analysis by emphasising the differences that arise as a result of the richer geometry of the complex plane. Key features of the authors' approach are to use simple topological ideas to translate visual intuition to rigorous proof, and, in this edition, to address the conceptual conflicts between pure and applied approaches head-on. Beyond the material of the clarified and corrected original edition, there are three new chapters: Chapter 15, on infinitesimals in real and complex analysis; Chapter 16, on homology versions of Cauchy's theorem and Cauchy's residue theorem, linking back to geometric intuition; and Chapter 17, outlines some more advanced directions in which complex analysis has developed, and continues to evolve into the future. With numerous worked examples and exercises, clear and direct proofs, and a view to the future of the subject, this is an invaluable companion for any modern complex analysis course.
Citește tot Restrânge
Toate formatele și edițiile
Toate formatele și edițiile Preț Express
Paperback (2) 22424 lei  23-35 zile +1609 lei  6-10 zile
  Cambridge University Press – 23 Aug 2018 22424 lei  23-35 zile +1609 lei  6-10 zile
  Cambridge University Press – 10 Mar 1983 31728 lei  44-56 zile
Hardback (1) 45180 lei  23-35 zile
  Cambridge University Press – 10 Mar 1983 45180 lei  23-35 zile

Preț: 22424 lei

Puncte Express: 336

Preț estimativ în valută:
4367 4501$ 3702£

Carte disponibilă

Livrare economică 09-21 septembrie
Livrare express 23-27 august pentru 2608 lei

Preluare comenzi: 021 569.72.76


ISBN-13: 9781108436793
ISBN-10: 110843679X
Pagini: 402
Ilustrații: 195 b/w illus. 2 tables
Dimensiuni: 175 x 247 x 20 mm
Greutate: 0.82 kg
Ediția: 2 Revizuită
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării: Cambridge, United Kingdom


Preface to the first edition; Preface to the second edition; The origins of complex analysis, and its challenge to intuition; 1. Algebra of the complex plane; 2. Topology of the complex plane; 3. Power series; 4. Differentiation; 5. The exponential function; 6. Integration; 7. Angles, logarithms, and the winding number; 8. Cauchy's theorem; 9. Homotopy versions of Cauchy's theorem; 10. Taylor series; 11. Laurent series; 12. Residues; 13. Conformal transformations; 14. Analytic continuation; 15. Infinitesimals in real and complex analysis; 16. Homology version of Cauchy's theorem; 17. The road goes ever on; References; Index.