Combating Online Hostile Posts in Regional Languages during Emergency Situation: First International Workshop, CONSTRAINT 2021, Collocated with AAAI 2021, Virtual Event, February 8, 2021, Revised Selected Papers: Communications in Computer and Information Science, cartea 1402
Editat de Tanmoy Chakraborty, Kai Shu, H. Russell Bernard, Huan Liu, Md Shad Akhtaren Limba Engleză Paperback – 9 apr 2021
The 14 full papers and 9 short papers presented were thoroughly reviewed and selected from 62 qualified submissions. The papers present interdisciplinary approaches on multilingual social media analytics and non-conventional ways of combating online hostile posts.
Din seria Communications in Computer and Information Science
- 20%
Preț: 460.54 lei - 20%
Preț: 313.10 lei - 20%
Preț: 643.20 lei - 20%
Preț: 312.30 lei - 20%
Preț: 324.99 lei - 20%
Preț: 630.84 lei - 20%
Preț: 634.45 lei - 20%
Preț: 321.17 lei - 20%
Preț: 324.68 lei - 20%
Preț: 631.00 lei - 20%
Preț: 631.31 lei - 20%
Preț: 633.83 lei -
Preț: 377.68 lei - 20%
Preț: 388.30 lei - 20%
Preț: 317.05 lei -
Preț: 371.37 lei - 20%
Preț: 323.23 lei - 20%
Preț: 423.73 lei - 20%
Preț: 321.81 lei - 20%
Preț: 319.13 lei - 20%
Preț: 630.51 lei - 20%
Preț: 325.61 lei - 20%
Preț: 321.17 lei - 20%
Preț: 321.81 lei - 20%
Preț: 325.79 lei - 20%
Preț: 640.83 lei - 20%
Preț: 323.23 lei - 20%
Preț: 325.79 lei - 20%
Preț: 317.68 lei - 20%
Preț: 635.26 lei - 15%
Preț: 623.39 lei - 20%
Preț: 628.32 lei - 20%
Preț: 319.42 lei - 20%
Preț: 324.99 lei - 20%
Preț: 1014.25 lei - 20%
Preț: 804.07 lei - 20%
Preț: 529.54 lei - 20%
Preț: 631.31 lei - 20%
Preț: 1183.08 lei - 20%
Preț: 494.98 lei - 20%
Preț: 388.26 lei - 20%
Preț: 318.67 lei - 20%
Preț: 389.14 lei - 20%
Preț: 323.23 lei - 20%
Preț: 458.73 lei - 20%
Preț: 530.40 lei - 20%
Preț: 388.00 lei - 20%
Preț: 632.09 lei - 20%
Preț: 388.91 lei - 20%
Preț: 310.73 lei
Preț: 318.67 lei
Preț vechi: 398.33 lei
-20% Nou
Puncte Express: 478
Preț estimativ în valută:
56.38€ • 65.78$ • 49.29£
56.38€ • 65.78$ • 49.29£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030736958
ISBN-10: 3030736954
Pagini: 258
Ilustrații: XI, 258 p. 19 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.39 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
ISBN-10: 3030736954
Pagini: 258
Ilustrații: XI, 258 p. 19 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.39 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
Cuprins
Identifying Offensive Content in Social Media Posts.- Identification and Classification of Textual Aggression in Social Media: Resource Creation and Evaluation.- Fighting an Infodemic: COVID-19 Fake News Dataset.- Revealing the Blackmarket Retweet Game: A Hybrid Approach.- Overview of CONSTRAINT 2021 Shared Tasks: Detecting English COVID-19 Fake News and Hindi Hostile Posts.- LaDiff ULMFiT: A Layer Differentiated training approach for ULMFiT.- Extracting latent information from datasets in The CONSTRAINT-2020 shared task on the hostile post detection.- Fake news and hostile posts detection using an ensemble learning model.- Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake News Detection.- Tackling the infodemic : Analysis using Transformer based models.- Exploring Text-transformers in AAAI 2021 Shared Task: COVID-19 Fake News Detection in English.- g2tmn at Constraint@AAAI2021: Exploiting CT-BERT and Ensembling Learning for COVID-19 Fake News Detection.- Model Generalization on COVID-19 Fake News Detection.- ECOL: Early Detection of COVID Lies Using Content, Prior Knowledge and Source Information.- Evaluating Deep Learning Approaches for Covid19 Fake News Detection.- A Heuristic-driven Ensemble Framework for COVID-19 Fake News Detection.- Identification of COVID-19 related Fake News via Neural Stacking.- Fake News Detection System using XLNet model with Topic Distributions: CONSTRAINT@AAAI2021 Shared Task.- Coarse and Fine-Grained Hostility Detection in Hindi Posts using Fine Tuned Multilingual Embeddings.- Hostility Detection in Hindi leveraging Pre-Trained Language Models.- Stacked embeddings and multiple fine-tuned XLM-RoBERTa models for Enhanced hostility identification.- Task Adaptive Pretraining of Transformers for Hostility Detection.- Divide and Conquer: An Ensemble Approach for Hostile Post Detection in Hindi.