Classification and Approximation of Periodic Functions: Mathematics and Its Applications, cartea 333
Autor A.I. Stepanetsen Limba Engleză Paperback – 9 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 619.61 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 9 oct 2012 | 619.61 lei 6-8 săpt. | |
| Hardback (1) | 624.63 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 iul 1995 | 624.63 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei - 15%
Preț: 568.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 564.25 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei - 15%
Preț: 581.54 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei - 15%
Preț: 679.01 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 15%
Preț: 564.42 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 578.70 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei
Preț: 619.61 lei
Preț vechi: 728.96 lei
-15% Nou
Puncte Express: 929
Preț estimativ în valută:
109.62€ • 127.91$ • 95.84£
109.62€ • 127.91$ • 95.84£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401040556
ISBN-10: 9401040559
Pagini: 380
Ilustrații: X, 366 p.
Dimensiuni: 160 x 240 x 20 mm
Greutate: 0.53 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401040559
Pagini: 380
Ilustrații: X, 366 p.
Dimensiuni: 160 x 240 x 20 mm
Greutate: 0.53 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Classes of Periodic Functions.- 1. Sets of Summable Functions. Moduli of Continuity.- 2. The Classes H?[a, b] and H?.- 3. Moduli of Continuity in the Spaces Lp. The Classes H?p.- 4. Classes of Differentiable Functions.- 5. Conjugate Functions and Their Classes.- 6. Weil-Nagy Classes.- 7. The Classes.- 8. The Classes.- 9. The Classes 35 10. Order Relation for (?, ? )-Derivatives.- 2. Integral Representations of Deviations of Linear Means Of Fourier Series.- 1. Fourier Sums.- 2. Linear Methods of Summation of Fourier Series. General Aspects.- 3. Integral Representations of ?n(f;x;?).- 4. Representations of Deviations of Fourier Sums on the Sets and.- 5. Representations of Deviations of Fourier Sums on the Sets and.- 3. Approximations by Fourier Sums in the Spaces c and l1.- 1. Simplest Extremal Problems in the Space C.- 2. Simplest Extremal Problems in the Space L1.- 3. Asymptotic Equalities for ? n(H?).- 4. Asymptotic Equalities for.- 5. Moduli of Half-Decay of Convex Functions.- 6. Asymptotic Representations for ?n(f; x) on the Sets.- 7. Asymptotic Equalities for and.- 8. Approximations of Analytic Functions by Fourier Sums in the Uniform Metric.- 9. Approximations of Entire Functions by Fourier Sums in the Uniform Metric.- 10. Asymptotic Equalities for and.- 11. Asymptotic Equalities for and.- 12. Asymptotic Equalities for and.- 13. Approximations of Analytic Functions in the Metric of the Space L.- 14. Asymptotic Equalities for and.- 15. Behavior of a Sequence of Partial Fourier Sums near Their Points of Divergence.- 4. Simultaneous Approximation of Functions and their Derivatives by Fourier Sums.- 1. Statement of the Problem and Auxiliary Facts.- 2. Asymptotic Equalities for.- 3. Asymptotic Equalities for.- 4. Corollaries of Theorems 2.1 and 3.1.- 5.Convergence Rate of the Group of Deviations.- 6. Strong Summability of Fourier Series.- 5. Convergence Rate of Fourier Series and Best Approximations in the Spaces lp.- 1. Approximations in the Space L2.- 2. Jackson Inequalities in the Space L2.- 3. Multiplicators. Marcinkiewicz Theorem. Riesz Theorem. Hardy — Littlewood Theorem.- 4. Imbedding Theorems for the Sets.- 5. Approximations of Functions from the Sets.- 6. Best Approximations of Infinitely Differentiable Functions.- 7. Jackson Inequalities in the Spaces C and Lp.- 6. Best Approximations in the Spaces C and l.- 1. Zeros of Trigonometric Polynomials.- 2. Chebyshev Theorem and de la Vallée Poussin Theorem.- 3. Polynomial of Best Approximation in the Space L.- 4. Approximation of Classes of Convolutions.- 5. Orders of Best Approximations.- 6. Exact Values of Upper Bounds of Best Approximations.- Bibliographical Notes.- References.