Asymptotic Methods for Relaxation Oscillations and Applications: Applied Mathematical Sciences, cartea 63
Autor Johan Grasmanen Limba Engleză Paperback – 3 apr 1987
Din seria Applied Mathematical Sciences
- 24%
Preț: 818.89 lei - 20%
Preț: 817.22 lei -
Preț: 493.64 lei -
Preț: 489.79 lei -
Preț: 499.19 lei - 18%
Preț: 969.60 lei - 18%
Preț: 713.59 lei -
Preț: 380.26 lei - 15%
Preț: 462.89 lei - 18%
Preț: 764.22 lei - 18%
Preț: 815.14 lei - 18%
Preț: 1771.10 lei - 18%
Preț: 701.95 lei - 18%
Preț: 754.81 lei - 15%
Preț: 678.47 lei - 18%
Preț: 1083.25 lei - 18%
Preț: 923.84 lei - 20%
Preț: 728.29 lei -
Preț: 414.07 lei -
Preț: 382.20 lei - 18%
Preț: 1090.76 lei - 24%
Preț: 874.54 lei - 24%
Preț: 741.98 lei - 18%
Preț: 869.26 lei - 15%
Preț: 471.78 lei - 15%
Preț: 612.44 lei - 18%
Preț: 867.25 lei - 15%
Preț: 573.87 lei - 15%
Preț: 620.13 lei - 15%
Preț: 635.00 lei - 24%
Preț: 1001.05 lei - 18%
Preț: 905.62 lei -
Preț: 527.92 lei -
Preț: 182.75 lei -
Preț: 383.96 lei - 15%
Preț: 618.64 lei - 15%
Preț: 508.48 lei -
Preț: 397.45 lei
Preț: 370.26 lei
Nou
Puncte Express: 555
Preț estimativ în valută:
65.52€ • 76.83$ • 57.54£
65.52€ • 76.83$ • 57.54£
Carte tipărită la comandă
Livrare economică 02-16 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387965130
ISBN-10: 0387965130
Pagini: 227
Ilustrații: XIII, 227 p. 4 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387965130
Pagini: 227
Ilustrații: XIII, 227 p. 4 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.34 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1.1 The Van der Pol oscillator.- 1.2 Mechanical prototypes of relaxation oscillators.- 1.3 Relaxation oscillations in physics and biology.- 1.4 Discontinuous approximations.- 1.5 Matched asymptotic expansions.- 1.6 Forced oscillations.- 1.7 Mutual entrainment.- 2 Free oscillation.- 2.1 Autonomous relaxation oscillation: definition and existence.- 2.2 Asymptotic solution of the Van der Pol equation.- 2.3 The Volterra-Lotka equations.- 2.4 Chemical oscillations.- 2.5 Bifurcation of the Van der Pol equation with a constant forcing term.- 2.6 Stochastic and chaotic oscillations.- 3. Forced oscillation and mutual entrainment.- 3.1 Modeling coupled oscillations.- 3.2 A rigorous theory for weakly coupled oscillators.- 3.3 Coupling of two oscillators.- 4. The Van der Pol oscillator with a sinusoidal forcing term.- 4.1 Qualitative methods of analysis.- 4.2 Asymptotic solution of the Van der Pol equation with a moderate forcing term.- 4.2 Asymptotic solution of the Van der Pol equation with a large forcing term.- 4.3 Asymptotic solution of the Van der Pol equation with a large forcing term.- Appendices.- A: Asymptotics of some special functions.- B: Asymptotic ordering and expansions.- C: Concepts of the theory of dynamical systems.- D: Stochastic differential equations and diffusion approximations.- Literature.- Author Index.