Applied Graph Theory in Computer Vision and Pattern Recognition: Studies in Computational Intelligence, cartea 52
Editat de Abraham Kandel, Horst Bunke, Mark Lasten Limba Engleză Paperback – 13 noi 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 614.73 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 13 noi 2010 | 614.73 lei 6-8 săpt. | |
| Hardback (1) | 620.68 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 12 mar 2007 | 620.68 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 20%
Preț: 486.29 lei - 20%
Preț: 1009.02 lei - 20%
Preț: 1003.51 lei - 20%
Preț: 1025.34 lei - 20%
Preț: 1008.57 lei - 20%
Preț: 1008.34 lei - 20%
Preț: 1124.84 lei - 18%
Preț: 2403.93 lei - 20%
Preț: 1400.58 lei - 20%
Preț: 1119.57 lei - 20%
Preț: 1120.92 lei - 20%
Preț: 1119.32 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 562.99 lei - 20%
Preț: 1114.70 lei - 20%
Preț: 1010.18 lei - 20%
Preț: 1121.38 lei - 20%
Preț: 1006.97 lei - 20%
Preț: 1113.80 lei - 18%
Preț: 1356.02 lei - 20%
Preț: 957.11 lei - 20%
Preț: 1002.56 lei - 20%
Preț: 1008.09 lei - 20%
Preț: 323.19 lei - 20%
Preț: 1240.82 lei - 18%
Preț: 1173.68 lei - 18%
Preț: 609.96 lei - 20%
Preț: 624.19 lei - 20%
Preț: 1517.38 lei - 20%
Preț: 618.64 lei - 20%
Preț: 632.09 lei - 20%
Preț: 951.51 lei - 20%
Preț: 1388.21 lei - 20%
Preț: 1005.40 lei - 20%
Preț: 950.72 lei - 20%
Preț: 1002.26 lei - 20%
Preț: 1403.26 lei - 18%
Preț: 1185.81 lei - 20%
Preț: 1010.58 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1225.75 lei - 20%
Preț: 1109.26 lei - 20%
Preț: 1004.63 lei - 20%
Preț: 1124.27 lei - 20%
Preț: 1117.15 lei - 20%
Preț: 1118.77 lei - 18%
Preț: 966.67 lei - 20%
Preț: 1014.90 lei - 20%
Preț: 1234.45 lei
Preț: 614.73 lei
Preț vechi: 723.21 lei
-15% Nou
Puncte Express: 922
Preț estimativ în valută:
108.77€ • 127.73$ • 95.48£
108.77€ • 127.73$ • 95.48£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642087646
ISBN-10: 3642087647
Pagini: 276
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of hardcover 1st ed. 2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642087647
Pagini: 276
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of hardcover 1st ed. 2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Applied Graph Theory for Low Level Image Processing and Segmentation.- Multiresolution Image Segmentations in Graph Pyramids.- A Graphical Model Framework for Image Segmentation.- Digital Topologies on Graphs.- Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition.- How and Why Pattern Recognition and Computer Vision Applications Use Graphs.- Efficient Algorithms on Trees and Graphs with Unique Node Labels.- A Generic Graph Distance Measure Based on Multivalent Matchings.- Learning from Supervised Graphs.- Special Applications.- Graph-Based and Structural Methods for Fingerprint Classification.- Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event Detection.- Clustering of Web Documents Using Graph Representations.
Textul de pe ultima copertă
This book will serve as a foundation for a variety of useful applications of graph theory to computer vision, pattern recognition, and related areas. It covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks. The first part of the book presents the application of graph theory to low-level processing of digital images such as a new method for partitioning a given image into a hierarchy of homogeneous areas using graph pyramids, or a study of the relationship between graph theory and digital topology. Part II presents graph-theoretic learning algorithms for high-level computer vision and pattern recognition applications, including a survey of graph based methodologies for pattern recognition and computer vision, a presentation of a series of computationally efficient algorithms for testing graph isomorphism and related graph matching tasks in pattern recognition and a new graph distance measure to be used for solving graph matching problems. Finally, Part III provides detailed descriptions of several applications of graph-based methods to real-world pattern recognition tasks. It includes a critical review of the main graph-based and structural methods for fingerprint classification, a new method to visualize time series of graphs, and potential applications in computer network monitoring and abnormal event detection.
Caracteristici
Will serve as a foundation for a variety of useful applications of the graph theory to computer vision, pattern recognition, and related areas Covers a representative set of novel graph-theoretic methods for complex computer vision and pattern recognition tasks Includes supplementary material: sn.pub/extras